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Abstract

Hyperspectral imagery is collected as radiance data. This data is a function

of multiple variables: the radiation profile of the light source, the reflectance of the

target, and the absorption and scattering profile of the medium through which the

radiation travels as it reflects off the target and reaches the imager. Accurate target

detection requires that the collected image matches as closely as possible the known

“true” target in the classification database. Therefore, the effect of the radiation

source and the atmosphere must be removed before detection is attempted.

While the spectrum of solar light is relatively stable, the effect of the atmosphere

on this profile varies significantly depending on multiple atmospheric parameters.

There are several data processing methods available to researchers for removing the

influence of these parameters; however, little research has been done to describe, in

a general way, how the uncertainty and error associated with these methods affects

target detection. Our objective is to characterize the uncertainty in the detection

method due to the uncertainty in the estimation of atmospherics. We apply a range of

atmospheric profiles, correlated with relative humidity, to a radiative transfer model-

based prediction of the atmospheric extinction effect using simulated hyperspectral

imagery. These profiles are taken from known distribution percentiles as obtained

from historic meteorological measurements at the simulated sites. We quantify the

expected detection error, given the range of atmospheric conditions in the historic

profile. We show that temporal variation in atmospheric parameters across their

distribution impacts the accuracy of target detection. We show that this impact

is more acute at high humidity than at low humidity. We show that, given the

uncertainty associated with atmospheric profile estimation, the optimum assumption

for purposes of target detection may be other than their median values, and that this

effect is target dependent.
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Hyperspectral-Based Adaptive Matched Filter Detector

Error as a Function of Atmospheric Profile Estimation

I. Introduction

1.1 Motivation

While the human eye is capable of perceiving radiation in only three broad bands

in the visible frequency range, hyperspectral imagers are capable of detecting radiation

in hundreds of frequency bands in the visible and near-infrared, nominally 400 -

2500nm. Thus, hyperspectral images can be thought of as a set of co-registered images,

where each image measures the radiation intensity at a specific wavelength. If we

examine a single pixel, we can collect the measurements at the different wavelengths

into an n-dimensional vector, thus creating an image cube (Fig. 1).

Horizontal Axis (512)

V
er

ti
ca

l A
xi

s 
(4

00
)

W
av

ele
ng

th 
(6

2)

Hyperspectral Data Cube 
400×512×62

Figure 1: An example of a hyperspectral imagery (HSI) data cube shown as a
three-dimensional matrix.

1
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In contrast to traditional imagery collected in the visible wavelengths, which

require intensive human analyst examination to exploit, the n-dimensional vectors

obtained from hyperspectral images (as illustrated in Fig. 1) are subject to analysis

by highly automated statistical methods. Using these, a wide range of materials

can be distinguished from each other in hyperspectral images, even though their

“colors” appear identical. This capability has led to the deployment of hyperspectral

sensors in biological and geological studies [9], hazard mapping [36], astronomical

observations [26], fire fuel mapping [31], and forestry applications [20].

The military has also found many applications of hyperspectral imagery, par-

ticularly in reconnaissance and intelligence gathering. The results of target detection

and exploitation have a long history in battle damage assessment (BDA), threat iden-

tification, and deployment planning. They also have been used in terrain mapping,

particularly in quickly identifying locations suitable as aircraft landing zones and spe-

cial forces insertion. Again, the highly automated nature of hyperspectral imagery

exploitation is its most salient advantage over traditional imagery in producing usable

intelligence in near-real-time. Mendenhall [35] gives several specific examples of this

superiority:

• The effectiveness of traditional imagery is highly dependant on its resolution;

this, in turn, is a function of the altitude at which an image is collected. In order

to accurately identify a target with traditional imagery, a sufficient number of

pixels must be collected to discern shape, structure, and size. In contrast, with

hyperspectral imagery, a single pixel, imaged over hundreds of frequency bands,

can be sufficient to determine the material type of a target.

• The material type is often the desired datum. This is especially true in detecting

the presence of detonated chemical weapons in an area military planners are

contemplating troop deployments.
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• Surface composition is an inherent feature of hyperspectral imagery, and is useful

in identifying trafficable regions for troop deployments and suitable aircraft

landing zones.

1.2 Problem

The purpose of this work is to gain a better understanding of how a “best guess”

on atmospheric parameter estimation affects the ability to do hyperspectral-based

target detection using the adaptive matched filter (AMF). As illustrated in Fig. 2,

the sun emits energy that is transmitted through the earth’s atmosphere where it is

absorbed, scattered, and transmitted to the earth’s surface. Some amount of energy is

reflected off of the earths’ surface and transmitted once again through some portion

Atmosphere

Target

Sunlight

Skylight

Reflected Light

Atmospheric 
Scattering

Target 
Reflection

Figure 2: Sunlight and skylight incident on a target. Some of the reflected energy
is directed toward the sensor.
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of the earths’ atmosphere to the sensor, along with some energy scattered by the

atmosphere directly to the sensor without having reached the surface.

Consider, for example, the spectral signatures of four different colored panels

as shown in Fig. 3(a). These signatures are in units of reflectance as a function

of the wavelength of the incident light and were collected with a field spectrometer

under laboratory conditions. They reasonably measure the targets’ “true” reflectance

properties.

Compare with them the signatures in Fig. 3(b). These measurements, in units

of W/m2/str, were taken from a hyperspectral image as acquired with a hyperspectral

camera. The image is of the four panels placed several hundred yards away against

a natural background under uniform solar illumination conditions. We can see, in

this comparison, that while the spectral signatures of the panels are vaguely recog-
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Figure 3: Plots of (a) the spectral signatures and (b) the average radiance by
wavelength (feature) for four colored panels. The spectral signatures were collected
using a field spectrometer, and serve as the “truth data” against which the radiances
from the hyperspectral image are compared. Notice the radiance intensity fadeout
in the middle wavelengths, as well as the higher overall variability compared to the
spectral signatures.
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nizable with respect to to each other in comparison with those in Fig. 3(a), there is

significant variation between the two. Safely assuming that the true reflectance of the

panels remains unchanged, it is apparent that the incident radiation (atmospherically

distorted sunlight) on the panels in Fig. 3(b) is far from uniform as a function of

wavelength.

One may consider a block diagram as depicted in Fig. 4 as the end-to-end ac-

quisition of a hyperspectral image. Based on this end to end process, after an image

is acquired, it is common to back-out the signal attenuation of the earth’s atmosphere

(manifest in the panel spectra shown in Fig. 3(b)) to obtain image spectra that bet-

ter approximates the reflective properties of the actual scene (as shown in the panel
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Figure 4: Acquisition through detector response flow. Uncertainty propagates
through the process flow and culminates at the detector response. This uncertainty
is a function of the uncertainty in the atmospheric parameter estimation, the uncer-
tainty in the atmospheric compensation method, and the inherent uncertainty in the
target detection algorithm due to its underlying assumptions.
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spectra of Fig. 3(a)). This process, called atmospheric correction, is commonly done

using a highly generalized set of atmospheric parameters. However, the problem with

this generalization is that these parameters themselves vary with local conditions,

and that this variation creates error in the atmospherically corrected estimate of the

target reflective properties. While this error itself is inevitable given limited knowl-

edge of the actual conditions, hyperspectral imagery (HSI) analysts presently have no

estimates of what that error is most likely to be. Furthermore, a typical operational

environment contains little a priori knowledge about the location in the image of spe-

cific targets or the specific atmospheric conditions under which the image is acquired.

Based on work developed by atmospheric physicists, we incorporate distributions of

atmospheric conditions in order to simulate HSI imagery under that distribution and

understand how it affects the output of the target detection algorithm, as depicted in

the lower right hand block of Fig. 4. Specifically, we develop a distribution of the error

associated with the use of the AMF as a function of the distribution of atmospheric

profiles as measured by radiosonde data collected at a real-world location.

1.3 Scope

Our intention is to limit discussion to that of the specific atmospheric correc-

tion methodologies as used by Raytheon’s Advanced Responsive Tactically Effective

Military Imaging Spectrometer (ARTEMIS) system: the Moderate Resolution Atmo-

spheric Transmission Model (MODTRAN) as implemented in the Fast Line-of-sight

Atmospheric Analysis of Spectral Hypercubes (FLAASH) and a specific target de-

tection algorithm (the AMF). As part of the analysis, we define an upper bound to

our system performance that assumes the ability to perfectly correct the atmospheric

effects illustrated in Fig. 3. This serves as the “best case” performance base-line to

which one may compare subsequent detector results.

6



www.manaraa.com

1.4 Research Question

The previous sections lead to the following critical research question: “Can

we characterize the detection error as a function of the distribution of atmospheric

parameters?” Simulated imagery shows that variation in the atmospheric profile

produces variation in the detection error as predicted by the L2 norm between the

resulting target spectra and measured by both the Bhattacharyya coefficient between

the resulting AMF output and the area under the curve (AUC) of the detection

Receiver Operating Characteristic (ROC) curve [14].

1.5 Overview

The balance of the dissertation is organized as follows. Chapter II discusses the

technical background to the research. It describes the mathematics behind the AMF,

empirical line correction, and radiative transfer. It reviews the published literature on

the various methods of atmospheric correction, including in-scene methods, statistical

methods, and modeling methods (specifically MODTRAN). Chapter III provides an

analysis of the AMF output based on the relative changes of the PDF across different

atmospheric profiles, which gives way to the approach defined in this dissertation. It

discusses the software applications we use and their purpose. It also describes the

metrics we use to evaluate the AMF output. Chapter IV describes the design of the

final experiment and results thereof. Chapter V summarizes the results and suggests

directions for future research.

As described in detail in Section 3.4.3, we begin by creating a series of well-

validated simulated hyperspectral images (HSI) of a suburban neighborhood in the

vicinity of the main campus of the Rochester Institute of Technology. These images

are simulated under a variety of atmospheric profiles obtained from an extensive

database described in Section 3.4.1.

We then perform target detection using the AMF against known target spectra.

As described in Chapter IV, we obtain the reflectance spectra of all pixels from the
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image radiance spectra and then perform the detection in reflectance space. We use

the application described in Section 3.4.2 for this purpose.

Finally, by studying the effect of the different atmospheric profiles on the ROC

curves generated by the AMF, AUC’s, and Bhattacharyya coefficients, we are able to

measure the effects on target detection of the atmospheric variability.

8



www.manaraa.com

II. Background

Our work uses long-standing mathematical techniques for hyperspectral imagery

(HSI) detection and atmospheric correction. These methods continue to be used

in research today. This chapter covers the following topics in some detail in order

for the reader to fully understand the research methodology: adaptive matched filter,

empirical line correction, and radiative transfer.

2.1 Adaptive Matched Filter

As described by Manolakis and Shaw [34], the Adaptive Matched Filter (AMF)

is a modified version of the log-likelihood ratio test (LLRT), where the LLRT is

expressed as follows:

ln Λ(X) = ln
p1(X)

p0(X)

= (µ0 −X)T · Σ−1
0 · (µ0 −X)− (µ1 −X)T · Σ−1

1 · (µ1 −X) . . .

+0.5 ln detΣ0 − 0.5 ln detΣ1 (1)

The parameters µ1 and Σ1 are the means vector and covariance matrix, re-

spectively, of the PDF p1(X) for the “target present” hypothesis H1. Ideally, these

parameters have been collected and stored in a spectral library. The parameters µ0

and Σ0 are the mean and covariance of the background PDF p0(X) under the “target

absent” hypothesis H0, and can be calculated directly from the image data. The

theoretically appropriate threshold γ for this detector is

γ = + ln η, η =
P0(C10 − C00)

P1(C01 − C11)
, (2)

where P0 and P1 are the prior probabilities of the hypotheses H0 and H1, the Cxx

variables are penalties defined in Table 1, and “det” is the matrix determinant.
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Table 1: LLRT Cost Function Definitions
C10 Cost of guessing H1 when H0 is true

C00 Cost of guessing H0 when H0 is true

C01 Cost of guessing H0 when H1 is true

C11 Cost of guessing H1 when H1 is true

Consider an experiment where each frame contains about 140 target pixels

against a total of 204, 800 pixels. Assuming C10−C00 = C01−C11, one could compute

the ideal threshold as:

ln η =
P0

P1

= ln
204800− 140

140
= 7.3. (3)

It may be that we do not know the prior probabilities, in which case there are a

number of approaches. We can assume equal priors and the previously defined costs,

in which case η = 1. This can be a viable approach even when the assumptions are

incorrect. In general, the value of finding a particular target rises inversely with its

density, so the incorrect assumptions tend to cancel each other out.

A possible limitation of the LLRT Detector is that the target covariance matrix

might not be known, or the target data may not have sufficient variation and/or

samples to produce an invertible estimate of the covariance matrix. In this event,

we can develop the AMF detector by making several assumptions on the LLRT [41].

First, we assume the target covariance matrix is equal to the background covariance

matrix, i.e. Σ1 = Σ0 = Σ, and obtain:

ln Λ(X) = ln
p0(X)

p1(X)
= (µ1 − µ0)

T · Σ−1 ·X, (4)

where X is the data (each sample a row vector) and µ1 and µ0 are the means of

the probability density functions (column vectors) for hypotheses H1 and H0, respec-

tively. Note that Eqn (4) is linear in X and therefore generates linear discriminant

functions [24]. Second, we assume that the background mean, µ0 = 0, and that µ1
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is some multiple b of the spectral signature s in a library of target reflectance, i.e.

µ1 = bs. We can obtain the maximum likelihood estimate of b as:

b̂ML = argmax
b

p1(X|bs,Σ) = (sT · Σ−1 · s)−1 (5)

Thus, if H1 is presence of a target and H0 is its absence,

ln Λ(X) =
( s

sT · Σ−1 · s
)T

· Σ−1 ·X (6)

becomes an assessment of the presence of a target with spectral signature s in the

pixel represented by sample X [34].

Therefore, for some subset of features in s and X, we calculate the covariance

matrix Σ of the training data Xtrain and then apply Eqn (6) to Xtest, the testing data.

Then, ln Λ(Xtest) is compared to a threshold to classify the data as either belonging

to the class of spectral signature s or not. By comparing these classifications to the

pixel’s known class membership, we determine a probability of detection (Pd) and a

probability of false alarm (Pfa) for that threshold. We obtain the ROC curve for that

class by varying the threshold from the maximum value of ln Λ(Xtest) to its minimum

value. In the ideal case, when X is equal to s, ln Λ(X) = 1.

Landgrebe [33] considers the issue of the optimum detection threshold for

Eqn (4). Because the output of Eqn (4) is χ2 distributed, we can calculate a threshold

from the detection parameters and an arbitrary Pd. For instance, if we fix Pd = 0.95,

then the threshold Ti for class i would be:

Ti = −4.744 + lnPi − 0.5 · ln detΣi (7)

There are other detectors one may consider [3] [40] [46], such as the adaptive

cosine estimator (ACE) [34], the correlation coefficient, and the spectral correlation

mapper [10]. However, we choose the AMF because of its popularity and performance.
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2.2 A Survey of Atmospheric Correction

Research into atmospheric correction falls broadly into three categories: radia-

tive transfer, mathematical models, and in-scene correction. Here we cover the general

topic of atmospheric correction that falls under the three categories described in Sec-

tion 2.3. All these methods described here and in Section 2.3 introduce uncertainty

into the calculation of atmospheric effects; there is no method in which uncertainty

is eliminated.

2.2.1 Radiative Transfer. After the atmosphere has done its work on the

sun’s radiation and the light has reflected from the target, we measure that light

by acquiring an image with our hyperspectral camera in units of radiance. In the

radiative transfer methodology, we must then make an estimate of the atmospheric

parameters and then use these parameters to back out the effects of the illuminating

source using mathematical models of atmospheric properties. We then reconstruct

our image in terms of reflectance. It is on this reconstructed image that we perform

target detection.

One example of applying radiative transfer methods to atmospheric correction is

described in [18], in which Gao et al. seek to recover reflectances from NASA/JPL [10]

AVIRIS data using atmospheric correction. Their method is well-suited to well-lit

Lambertian targets imaged on clear days.

Of the approximately thirty gases present in the atmosphere, only seven affect

the spectral signatures of transmitted radiation; of these, water vapor (H2O) is the

most variable. These gases are non-uniformly distributed vertically from the earth’s

surface. The work in [18] considers the radiative transfer method of estimating at-

mospheric affects as implemented in the Satellite Signal in the Solar Spectrum (5S)

code [18]. This method uses the total atmospheric transmittance in its calculation,

which in turn uses the atmospheric reflectance (i.e., light that never reaches the tar-

get, but is reflected to the sensor). The authors in [18] point out that radiation is

both scattered in different directions and absorbed by the molecules.
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At the time of the paper’s writing, Gao et al. [18] state that the standard

atmospheric correction model, such as LOWTRAN, relied on assuming that the dis-

tribution of water vapor throughout a column of atmosphere is uniform. Gao et al.

seek to undo this assumption by calculating the water vapor content from the 0.94

and 1.14µm wavelengths and applying an absorption curve based on that content to

the entire signature in the 0.4 to 2.5µm region. They rely on two assumptions. First,

that the relationship between wavelength and the reflectance at that wavelength at the

water vapor absorption bands (here taken to be 1.38 and 1.88µm) is linear. Second,

that the transmittance from 0.94 and 1.14µm varies with water vapor.

In [19], Gao et al. develop an atmospheric correction algorithm for ocean scenes.

In particular, they attempt to retrieve the “water leaving radiances,” or the amount

of the illumination that reflects toward the imager from below the surface of the

water. Previous algorithms estimate the atmospheric aerosol content from portions

of the spectrum (between 0.66 and 0.87µm) where the water leaving radiance is zero;

however, suspended particles in turbid coastal waters often produce non-zero values

for these radiances even within this spectral range. Gao et al. employ a method of

estimating atmospheric conditions using spectral matching with data generated by a

radiative transfer algorithm. This is necessary for obtaining accurate water-leaving

reflectances, i.e. ocean color from remotely sensed data.

Gao et al. [19] review the radiative transfer algorithm for expressing the ob-

served radiance of the sensor in terms of three factors: the atmospheric radiance, i.e.

illumination reflected by the atmosphere before ever reaching the surface; the radi-

ance reflected from the surface; and the radiance reflected from below the surface. It

is this last radiance that is of particular interest to ocean scientists in determining

ocean color. They solve this relationship for the ocean leaving reflectance in terms of

the atmospheric transmittances, the atmosphere and surface reflectances.

Gao et al. [19] use radiative transfer code published by Ahmad and Fraser in

1982 [4] to develop a lookup table that they use for the spectral matching. They
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assume a U.S. Standard Model Atmosphere for the temperature and pressure profile.

They used the code to generate estimates of the atmospheric reflectances and trans-

mittances for 20 aerosol models, various scene geometries, and 10 optical depths for

14 wavelengths.

Scene geometry is recovered easily enough from the image time-of-day and the

known imager position. Transmittances are calculated for a range of water vapor

amounts and stored in a lookup table. The overall scene reflectance (including atmo-

spheric affects) is calculated based on the known solar spectrum. Gao et al. estimate

true water vapor content from the 3-channel ratioing technique described in [18], and

match it to an atmospheric transmittance in the lookup table. The method then

removes the atmospheric transmittance effect by dividing the observed reflectance by

the transmittance. This ratio is then matched across the 14 values in the lookup

table generated by the radiative transfer code, and the matching parameters are then

plugged into the formula for calculating the water leaving reflectance.

The spectral matching method employed by Gao, et al. is very similar in overall

intent to the method employed by Healy and Slater in [25] (described in Section 2.2.2).

2.2.2 Mathematical Methods. The second general approach to atmospheric

correction researched is to develop high-dimensional manifolds over a range of atmo-

spheric parameters for a particular spectral signature or set of signatures and “match”

a candidate radiance spectrum to one of those manifolds.

In [5], Borel et al. attempt to obtain atmospheric parameters, specifically tem-

perature and transmittance, by varying atmospheric quantities over a range of es-

timates and selecting the parameters that provide the smoothest estimate of the

emissivity. Emissivity is the ratio of the radiance of a target pixel to a “black body”

pixel at the same temperature. A black body is a target with zero reflectance and

transmittance, i.e. it absorbs all radiation incident on it [12]. As such, its emissivity is

therefore one, emitting thermal energy in units of radiance (W/m2/str/m) according

to Planck’s equation:
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S(λ) =
2hc2

λ5

1

ech/λkBT − 1
, (8)

where c is the speed of light (3× 108m/s), h is Planck’s constant (6.63× 10−34J · s),
kB is Boltzmann’s constant (1.38 × 10−23J/◦K), T is the substance’s temperature

in Kelvin (K), and λ is the wavelength in meters (m). Other targets, called “gray

bodies” have emissivities less than one [12].

As a measure of smoothness, Borel et al. [5] choose the autocorrelation across a

variable window. They then sum and normalize those autocorrelations to obtain an

average de-correlation wavenumber as a function of the atmospheric transmittance.

By applying a “boxcar window” smoothing function to the emissivity and then plot-

ting the de-correlation wavenumbers against the width of this window, they determine

that a resolution of 20cm−1 is necessary to distinguish atmospheric affects, which we

wish to remove, from emissivity features, which we wish to keep.

The method they use begins by picking a typical emissivity of 0.95 and a “stan-

dard atmosphere” transmittance. These values are applied to a radiative transfer

equation for the radiance at the ground, from which a surface temperature is calcu-

lated using the Planck function. The radiative transfer equation is then solved for

a better estimate of the emissivity under the estimated conditions. When this op-

timization process is complete, they compare the smoothness of the resulting curves

as described above. Their approach results in true surface temperature estimates of

ground objects within 0.021 degK.

In [25], Healy and Slater propose a method of atmospheric correction that is

independent of illumination, atmospheric conditions, and the angle at which the image

is acquired. It does this by deriving and applying a least-squares estimate of the basis

for the vector subspace in which the radiance spectrum for a particular material

is thought to reside, calculating maximum-likelihood estimates of the coefficients of

those basis vectors for a particular target given a set of possible class memberships,

and then applying a likelihood ratio test to determine the class membership. If
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classification can be performed without an estimate of the atmospheric conditions,

then target detection methodologies are freed from the errors associated with such

estimates. The only error would be any persistent bias in MODTRAN’s estimate of

a material’s sensor radiance under any atmospheric condition.

The paper documents an experiment in which an image taken with the HYDICE

sensor of a green cloth in direct sunlight is compared to an image of the same green

cloth illuminated only by skylight that shines through, or reflects from, ambient tree

cover. According to [25], even the normalized radiances of these two images show

differences that can make detection difficult.

Healy and Slater [25] present a model of the received radiance as the sum of

reflected sunlight, reflected skylight, and the “path radiance,” or the illumination that

is reflected to the sensor by the atmosphere before ever reaching the image target.

The first two of these factors is dependent on the reflectance of the material under

consideration.

They use MODTRAN v3.5 and sets of values for ten atmospheric and scene-

geometry parameters to assemble a set of 17,920 possible illumination vectors with

which to multiply the material reflectance. These illumination functions are then ap-

proximated by a linear combination of a much smaller number (3 - 12) of basis vectors

using the least-squares method. The paper estimates that the error associated by this

linear approximation rapidly drops as the number of basis vectors approaches nine.

Healy and Slater infer from this that the spectral-radiance vectors of the reflecting

material, each with 210 dimensions (frequencies) actually lie in a low-dimensional

subspace. In other words, for a particular material imaged at W frequencies, not

all possible radiance vectors are equally likely, regardless of the illumination and

atmospheric conditions, and that the likely radiance vectors have a mathematical re-

lationship between each other that can be defined as a linear combination of N basis

vectors where N << W .
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The possible sensor radiances for a given material can be thought to lie in an

N dimensional subspace of RW . Each target material occupies a different subspace,

however, and classification becomes not a matter of determining the true reflectance

vector of a given target, but rather applying an LRT to a particular set of basis vec-

tors defining the target’s true subspace. This can be accomplished without reference

to any of the illumination or atmospheric conditions. They first attempted to dis-

criminate among 100 different materials, applying to each of the materials the 17920

illumination vectors generated by MODTRAN. They did so successfully 97.9% of the

time. Furthermore, they compared the performance of their invariant algorithm with

the spectral angle mapper (SAM) algorithm for HYDICE images of several shades

of green fabric in a mixed-vegetation scene under different lighting conditions. The

SAM algorithm, which evaluates the difference between the reference vector Lγ and

the sensor radiance L′ (x, y) as

arccos

(
Lγ · L′(x, y)

‖Lγ‖ · ‖L′(x, y)‖

)
(9)

does not depend for its effectiveness on any multiplicative factor that might arise

from lighting conditions. In this case, the SAM reference vectors were determined in-

scene, while the invariant algorithm relied only on the MODTRAN estimates. While

the SAM performed better in direct sunlight (in other words, when the reference

spectra and the target spectra were the result of identical lighting conditions), the

invariant method performed better in the shade. While the SAM method appears to

have degraded performance in the shade, the paper does not provide the ROC curve

beyond a probability of false alarm (Pfa) of 5 × 10−4, instead showing the results of

the detection threshold overlaid on a photograph of the scene.

To further evaluate the invariant method, it would be worthwhile to compare

the results of the invariant method against other detection algorithms, such as the

LLRT, the AMF and the ACE. These other methods rely on atmospheric correction,

of course, and if there are in-scene references then MODTRAN should be able to
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generate some parameter estimation. Our expectation is that the invariant method is

superior in circumstances in which no in-scene references are available. The method

described does not appear to lend itself very easily to dimensionality reduction. Since

the data must be compared to some subspace that itself represents a feature trans-

formation/reduction, but the transformation is different for every different material,

then we would have to keep all the data to maintain flexibility.

Suen et al. [43] expand on the work by Healy and Slater [25] by applying the

invariant method to discrimination among 237 materials from the United States Geo-

logical Survey spectral library. The primary variable under consideration was off-nadir

viewing: the elevation of the solar illumination, the elevation of the sensor, and the

azimuth difference between the two. The experiment again used MODTRAN to apply

the solar illumination under 48 sets of atmospheric conditions and 234 solar/sensor

configurations to the spectral reflectances of the 237 materials. Selecting invariant

subspaces of 9 dimensions from the 210-dimension HYDICE spectral signatures, Suen

et al. first used the invariant method to classify the 237 materials under these differ-

ent conditions with perfect accuracy. They then simulated typical additive HYDICE

sensor noise after the basis vectors had been calculated, where the magnitude of the

noise variance was a multiplier of the intensity. In all configurations, the error was

less than 1%.

Suen et al. applied their method to HYDICE images with synthesized off-

nadir viewing angles. They used the empirical line correction method to estimate

the reflectance of each pixel in the image; this data was then fed to MODTRAN

to estimate the sensor radiance for various viewing angles. (No detail is provided

on which set of atmospheric parameters were used in MODTRAN.) Seeking targets

composed of green and tan cloth, again the method detected all pixels of all targets

before any false alarms were generated. They conclude that real off-nadir data would

be useful to validate their estimates.
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2.2.3 In-Scene Correction. In [6], Borel expands on earlier work in choosing

among parameter sets based on their calculated smoothness. He introduce a method

they call In Scene Atmospheric Correction (ISAC), in which a wavelength with low

path radiance and high atmospheric transmission is selected. As before, the assump-

tion that a constant emissivity of 0.95 is used. Based on this assumption, a surface

temperature is computed using the inverse Planck function. At a second wavelength,

the radiance is measured. These two values are plotted against each other for each

pixel. The highest values of the measured radiance for each calculated radiance corre-

spond to those pixels with the highest blackbody properties. These points are linear.

If we draw a line through those points at the top of each bin, we discover that the

slope of that line is proportional to the atmospheric transmission and the intercept is

proportional to the path radiance. The emissivity spectrum can then be calculated

from these values. This method, however, only works if the scene has a wide variety

of color temperatures represented, and sufficient blackbody pixels.

Borel also reviews the emissivity selection criterion of smoothness. They esti-

mate the ground temperature of the target and pick a wavelength with high atmo-

spheric transmittance. They calculated emissivity spectra for a range of temperatures

around this estimate, and pick the smoothest one, inferring that its temperature is

the most correct. However, they realize that there are, in fact, multiple atmospheres

for which a particular spectrum might be sufficiently smooth, so the initial parameter

estimates must be accurate in order to get an accurate temperature calculation.

To improve this estimate, Borel substitutes the one-layer atmospheric model

used in [5] with estimates calculated by MODTRAN. Borel uses the ISAC method to

find a number of likely atmospheric profiles, and these are tested against each other

to discover which atmosphere generates the smoothest emissivity.

In [22], Gruninger, et al. suggest that the registration of thermal infrared (TIR)

and visible and shortwave infrared (VIS-SWIR) images can reduce the image ambi-

guities in TIR data. They begin with a discussion of several atmospheric correction
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measures and their limitations. For example, ISAC [29] requires the presence of black-

body targets in scene over a range of temperatures in order to get good slope-intercept

calculations, but these are not always present. Borel’s smoothness evaluations [7] re-

quire (evidently) resolutions that are not always available, especially in TIR with its

longer wavelengths. Canonical correlation analysis (CCA), which “correlates a basis

of atmospheric transmittance, path radiance and downwelling radiance to the scene

radiances to select an atmosphere” [22] generates different sets of coefficients for each

for each of these quantities, yielding inconsistent atmospheric profile predictions. An

oblique projection technique called “OPRA” uses MODTRAN to create “two oblique

subspace projections to estimate the atmospheric path radiance and transmittance

separately” [22], but this yields different atmospheric profiles for different regions of

the subspace. Healy and Slater’s method (discussed) provides no atmospheric infor-

mation.

Gruninger, et al. propose a modification to Healy and Slater’s method that

is different in at least two respects. First, it appears to estimate reflectances as a

linear combination of a set of in-scene basis spectra, and that this estimation occurs

simultaneously with the use of bases to describe atmospheric conditions. Second, they

calculate the radiance basis from a simple equation rather than using MODTRAN to

generate the results of all possible parameter combinations.

After a discussion of the effect of emissivity on radiance, Gruninger et al. pro-

pose what they call a “triple expansion” wherein they create a basis for temperature,

emissivities, and radiance. The radiance basis is calculated from a range of values

for atmospheric transmittance, and upwelling and downwelling radiances. A given

radiance can be expressed as a weighted sum of these basis vectors, the coefficients of

which break out the atmospheric parameters; however, this equation is underdeter-

mined.

The paper then applies singular value decomposition to the radiance basis; the

left singular vectors of this operation, in turn, form the basis spectra from which a new
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set of coefficients is determined using the least squares method. This new equation is

“fully determined,” and the resulting coefficients are then back-transformed to recover

the first set of coefficients. These coefficients are used to find the atmospheric and

material quantities.

The method is tested on both synthesized and experimental data. An “end

member” code called sequential maximum angle convex cone (SMACC) was used to

obtain the basis set for the atmospheric parameters (transmittance, upwelling and

downwelling radiance).

Gruninger et al. provide graphs showing the true values for transmittance,

upwelling radiance, downwelling flux, and emissivity, all as functions of wavelength,

plotted against the values estimated by their method. While the spectra are broadly

similar, they appear to me to have substantial differences. The paper does not give

spectra of estimated and true reflectance signatures for the particular materials; how-

ever, we know from experience that the estimates must be very accurate for some of

the detection methods we have examined. If what they provide is representative, then

the method is not especially superior as a way of estimating reflectance.

2.2.4 Conclusion. As the research cited above indicates, the methods of

atmospheric correction in active use today rely on either assumptions about the at-

mospheric composition over the target or removing the need for such assumptions by

the use of in-scene target samples or statistical methods.

One of the few studies that specifically examines the effect of atmospheric vari-

ability to target detection is documented in [30]. Here Kacenjar, et al. study atmo-

spheric variability and its effect on detection of igneous rock classes on the Hawaiian

land mass.

Kacenjar, et al. estimated the atmospheric variability of Hawaii’s climate from

the National Oceanographic and Atmospheric Administration (NOAA) Forecast Sys-

tem’s Laboratory (FSL) [38] database of daily radiosonde collections. They then used

MODTRAN to simulate the effect of these different profiles on igneous rock reflectance
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spectra from the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) [37] spectral library published by National Air and Space Administration’s

(NASA) Jet Propulsion Laboratory (JPL).

Kacenjar, et al. then use the Spectral Angle Mapper (SAM) detection algo-

rithm [34] to calculate the spectral angle between the mean spectrum of the picrite

igneous rock class with the radiosonde-adjusted spectra for both picrite and five other

igneous rock classes. By graphing the daily values of these angles over the course of

a year, they show that, first, there is little variation in the angles over the year they

examined, and second, that the angle values are well-separated, with the same-class

comparison consistently showing the smallest difference.

Significantly, Kacenjar, et al. only compare spectral angles among a discrete set

of rock classes. They do not perform target detection against a realistic background.

Further, the climate associated with their radiosonde data is famously invariant. For

these reasons, there is room for further investigation of atmospheric variation effects

on target detection under operationally relevant conditions.

2.3 Empirical Line Correction (An In-scene Methodology)

One way of correcting for atmospheric distortion is called empirical line cor-

rection (ELC). ELC picks at least two field samples x1 and x2, where xi =

[xi,1 xi,2 · · · xi,N ] with N spectral features whose class memberships are already known

and for which we possess spectral signatures s1 and s2 in our spectral library. Al-

ternatively, a “dark” and a “light” Lambertian surfaces can be matched to uniform

reflectance spectra of zero and one, respectively. However, such surfaces must be

chosen very carefully to prevent errors. Once the surfaces are chosen, we can plot a

linear regression for each feature j = 1 . . . N matching the image radiances to

w =
φT · S
φT · φ , φ =


1 x1,j

1 x2,j


 , S =


s1,j
s2,j


 (10)
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where w is a vector containing the regression weights. We then use these weights to

regress the entire data set of M pixels X into a transformed data set X̃ more closely

matching the various classes’ ideal reflectance values for each feature j, as:

X̃ = X · w, X =




1 x1,j

1 x2,j

...
...

1 xM,j




(11)

Conventionally, ELC is a simple way of translating the radiance values in an

image to the reflectance values as in the spectral library. Given uniform illumination

across an image, the relationship between radiance and reflectance is largely linear,

and is therefore a candidate for linear regression. However, ELC requires prior knowl-

edge of two points in the image for which we know the actual reflectance; all other

points can then be regressed to the line between them.

Consider Fig. 5, a plot of the mean radiance of the four target panels as they

appear in the image versus their known reflectance from the spectral library. This

plot is of the values for the single dimension corresponding to a wavelength of 522nm,

broadly representative of the other dimensions. We see the linear relationship between

the points, as illustrated by the dotted line drawn between the points representing

the black and silver panels. Again, this assumes that we have in advance one sample

from each of two known classes, and that the illumination conditions across all targets

in the image are uniform. Even then, we can observe from the distance between the

point representing the green panel and the regression line that the method is not

without error.

We now consider an alternative to this prior knowledge. The black dotted line in

Fig. 5 is the regression line between two points mapping the dimmest radiance in the

frame to a reflectance of zero and the brightest radiance to a reflectance of one. As we

can see, this is a poor estimate of the relationship among the targets, which suggests
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that the relationship may not be linear. The normalized mean-squared error of the

four target classes at this wavelength is 40% for this light-dark regression, compared

to 0.3% for the black-silver regression. A close inspection of the image shows that

there are a handful of pixels that are disproportionately bright, and in fact these

pixels have a radiance of around 33DN , compared to a radiance of 8DN for the

silver panel. These pixels represent highly specular (in contrast to our Lambertian

assumption) reflection from some shiny reflective object in the scene. Unfortunately,

we cannot rule out a priori the possibility of such anomalous reflections in our scenes.

Consider Fig. 6, where we present the first two principal components of all pixels

in the image, plotted by their magnitude along the x and y axes, and color-coded by
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Figure 5: Plot of the laboratory-measured reflectance vs. image radiance for di-
mension 9 (λ = 522nm) of four colored panels and the normalized mean-squared error
for both the regression between the black and silver pixels and the regression between
the lightest and darkest pixels. Note that the “Green” pixel visibly departs from the
black-silver regression model.
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their class memberships. These pixels have been “atmospherically corrected” to their

reflectances as estimated by the ELC method.

Overlaying these pixels are larger markers corresponding to the expected output

of a log-likelihood ratio test (LLRT) detector for pixels of that spectral value given the

true mean and variance of the target panels as measured by a field spectrometer. As we

can see, for the black and silver panels, the peak return of the detector corresponds to

the approximate modal pixel value. This is as expected, since the regression mapped

the mean pixels directly on to their known library reflectances. However, we can also

see considerable error associated with the values for the green panel and especially the
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Figure 6: Plot of the first two principal components for four colored panels as
corrected by the ELC method, overlaid with the same features from the spectral
library signatures. The ELC method anchored the regression between the “black”
target and the “silver” (represented by cyan) target; as expected, the signatures
precisely match the pixels for these panels. Note, however, the error associated with
the green and beige pixels and the normalized mean-squared error for both the green
and beige (represented by red) pixels.
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beige panel. Clearly, even the application of a highly optimized ELC method is prone

to measurable error in correcting radiances to reflectances for targets in which we have

no known in-scene examples. This illustrates the effect of atmospheric misestimation

and motivates the need to evaluate the effect of this error on spectral target detectors.

2.4 Radiative Transfer

The fundamentals of radiative transfer are detailed in multiple references. The

presentation here follows from Petty in [39].

As the electrons of an atom change energy levels as a result of collisions with

other atoms, the substance of which it is a part emits photons of radiation whose

spectral signature is dependent on the temperature of that substance. The spectral

signature S(λ) in units of radiance (W/m2/str/m) is given by Planck’s formula as:

S(λ) =
2hc2

λ5

1

ech/λkT − 1
, (12)

where c is the speed of light (3× 108m/s), h is Planck’s constant (6.63× 10−34J · s),
k is Boltzmann’s constant (1.38 × 10−23J/◦K), T is the substance’s temperature in

Kelvin (K), and λ is the wavelength in meters (m). Planck’s formula applies to any

substance with a uniform emissivity of one.

Most objects, however, do not have emissivities uniformly equal to one. As a

function of wavelength, they emit only some of the incident radiation. The rest of the

radiation is reflected at its incident frequency. Under thermodynamic equilibrium,

the relationship is therefore ǫ(λ)+ r(λ) = 1, where ǫ is the emissivity (the percentage

of S that is emitted at a given wavelength) and r is the reflectance (the percentage

of incident radiation that is reflected at a given wavelength) [12].

While the surface of the earth’s sun can rightly be described as having uniform

emissivity (known as a blackbody), the molecules of the earth’s atmosphere reflect

(scatter) and emit (absorb) the sun’s radiation on its way to targets on the earth’s

surface, and also absorb and emit radiation along the path from the target to the
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sensor. The effort to quantify these affects is known as radiative transfer. This process

is described in a number of references; the following explanation comes from [16].

The basic equation for the propagation of radiation through the atmosphere is

Beer’s Law:

Iλ(s2) = Iλ(s1) exp (−τ(s1, s2)), (13)

where I is in units of irradiance (Watts/m2), s1 is the height at the top of the

atmosphere, s2 is the height of the surface target, and τ is the optical depth. The

optical depth is defined as:

τ(s1, s2) =

∫ s2

s1

βe(s)ds, βe = βa + βs (14)

where βe is the extinction coefficient, βa is the absorption coefficient, and βs is the

scattering coefficient.

The absorption coefficient is determined from the equation

βs = frac4πniλ (15)

where ni is the imaginary component of the index of refraction (determined experi-

mentally and stored in the HITRAN database) and λ is the wavelength of the incident

radiation.

The scattering coefficient in the visible and ultraviolet wavelengths comes from

Rayleigh scattering from the equation

βs = f
32π3W +mρ

3ρ20NAλ4
(n0 − 1)2 (16)

where Wm is the molecular weight of dry air (28.966kg/kmol), n0 = 1.0003 is the real

index of refraction for dry air at sea level, ρ is atmospheric density, ρ0 is the density
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of air at sea level, NA is Avogadro’s number (6.0221023/mol) [32], and f = 1.061

corrects for anisotropic properties of air molecules.

This work considers humidity variation only in the non-aerosol case, and thus

concerns itself with the effect of molecular scattering. However, as recommended in

Chapter V, future work should consider the effect of aerosols and thus the effect that

larger particles have on atmospheric extinction.

The extinction coefficient is related to the extinction cross-section σe by

βe = σeN, (17)

where N is the number of microscopic particles in a unit volume. (The term βe can

also be calculated from the mass extinction coefficient ka and the atmospheric density

ρ, which is an exponential function of height.) The particles are normally distributed

by size as measured by radius r, with a median radius rm and a standard deviation

σ. (Do not confuse this standard deviation σ with the extinction cross-section σe.)

Thus:

dN(r)

d(log r)
=

N

(2π)1/2 log(σ)
exp

[
−(log r − log rm)

2

2(log σ)2

]
(18)

We can relate the extinction cross-section σe to the extinction efficiency

Qe(m,λ, r) by

σe(λ) =

∫ 2

1

Qe(m,λ, r)πr2
dN(r)

r ln 10d(log r)
dr, (19)

where m is the mass per particle.

The extinction efficiency, Qe, is a quantity which depends on absorption, a

measure of the percentage of the energy absorbed by the atmosphere, and scattering,

a measure of the percentage that is reflected away from the target, including back

into the sensor.
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The relative humidity causes the aerosol particles to grow in size. There are

several methods for calculating the humidity-specific mean radius and standard de-

viation of the particle size, as in [11]. This growth is reflected in Eqn (20). The

computer program known as the Laser Environmental Effects Distribution Reference

(LEEDR) [15] first calculates the number density N using the dry aerosol mean ra-

dius and standard deviation. This number is then used to to calculate the humidity

altered radius value from Eqn (18) as:

log r(aw) = ±
[
− ln(ND

√
2π log σ)2(log σ)2

]1/2
+ log rm, (20)

where ND = dN/d(log r). The relative humidity not only changes the radius of the

aerosol particles, it also changes the index of refraction of the particles:

n = nw + (no − nw)

(
ro

r(aw)

)3

, (21)

where n is the complex refractive index for liquid water, n0 is the refractive index for

the dry particles, ro is the radius of the dry particles and r(aw) is the radius of the

particle at the given relative humidity as described in Eqn (20).

The calculation of the extinction efficiency is complex and relies on many factors.

Wiscombe [47] describes an efficient computation method for this value that relies on

the refractive index of the aerosols.

There are several ways in which atmospheric variables influence the effect that

humidity has on atmospheric transmission. Of these, the most significant are pressure

broadening, doppler broadening, and the density effect.

2.4.1 Pressure Broadening. In the relatively dense atmosphere close to

the earth’s surface, the frequent molecular collisions change both the emission and

absorption frequencies of the photons. At the molecular level, absorption occurs at

very specific frequencies, called lines, depending on the molecule type. However,
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the effect of these collisions is to “broaden” these lines into distributions. Pressure

broadening is described as:

αL = α0

(
p

p0

)(
T0

T

)n

,

where p is pressure, T is temperature, and n is an empirically determined constant.

The αL term, in turn, helps determine the shape of the absorption distribution

as a function of frequency. This shape is known as the Lorentz line shape and is

defined as

f(ν − ν0) =
αL

π [(ν − ν0)2 + α2
L]
,

where ν0 is the discrete absorption line frequency and ν is the frequency of the radi-

ation.

The absorption cross-section per unit mass, σν , is calculated as

σν = S · f(ν − ν0), (22)

where S is an empirically determined constant known as the line strength.

2.4.2 Doppler Broadening. At higher altitudes, collisions are infrequent;

however, the relative motion of the atmospheric particles induce doppler shifts in the

frequencies of the absorbed and emitted radiation. These doppler shifts also have the

effect of broadening the distribution of the absorption lines. Because the motion of

atmospheric particles is distributed, on average, in well-defined ways, we can eliminate

the need for any specific knowledge of the particle velocities and describe the line shape

equation for doppler broadening as:
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fD(ν − ν0) =
1

αD

√
π
exp

[
(ν − ν0)

2

α2
D

]
,

αD = ν0

√
2kBT

mc2
,

where kB is the Boltzmann constant. The line shape affects the calculation of the

absorption cross-section as in Eqn (22).

2.4.3 Density Effect. Independent of any particular spectral line, the at-

mosphere attenuates all radiation passing through it as a function of the distance

through which the radiation must travel. This is known as the density effect. We can

solve for the transmittance t, or the ratio of the radiation reaching the target to the

radiation incident on the top of the atmosphere, as a function of the target altitude

z:

t(z) = exp

[
−kawlρ0H

µ
exp(− z

H
)

]
, (23)

where w1 is the constituent mixing ratio, ka is the mass absorption coefficient, ρ0 is

the maximum density at sea level, and H is the scale height (around 8km, the altitude

at which the density is e−1 = 36% of its value at sea level).
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III. Methodology

The objective of this research is to measure the effects of the variation of atmospheric

composition, specifically the variation of atmospheric water vapor and temperature,

on the detection of known signatures against a realistic background using the adaptive

matched filter (AMF). To that end, our methodology models the imaging conditions

and measures how much those conditions are different between profiles under consider-

ation. Our methodology employs several applications that will simulate these effects,

including simulated imagery and radiative transfer, with which we use radiosonde

data collected at the target location. We deploy a method of target detection: here,

the AMF, but it could be the adaptive cosine estimator (ACE), the log-likelihood

estimator (LLRT), or the generalized likelihood ratio test (GRLT), for example. We

evaluate the results of that detection using several metrics, including the receiver op-

erating characteristic (ROC) curve and the area under the ROC (AUC). This process

allows us to observe and measure the effect on target detection of whatever changes we

make to the atmospheric profile and identifies the optimum atmospheric assumptions

to make for target detection, given uncertainty about the true parameter values.

3.1 Distances Between Atmospheres

The process developed in this research for assessing the error of atmospherics on

the AMF output considers the characterization of atmospheric distance: how should

the changes in relative humidity between atmospheric profiles be measured? It is

currently unknown what the differences between atmospheric profiles really mean and

how two distances with the same numerical value may affect the estimated reflectance

of a hyperspectral signature. That is to say, different pairs of atmospheric profiles

with the same measured distance between them may not have the same effect on the

error in their target signature, and therefore the relationship is likely one-to-many

and not necessarily one-to-one. As such, one must carefully choose how the input

error (input being the atmospheric profile) is represented.
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There are two general approaches to defining a distance between atmospheres.

A first approach is to measure the distance between two solar irradiance curves defined

by a blackbody radiator (the sun) transmitting through an atmospheric profile. A

second approach is to consider the difference between the profiles themselves. How

are atmospheric profiles characterized? The most significant and widely recognized

approach is to characterize the atmosphere by the atmospheric water vapor content.

Several measures of water vapor content exist: absolute humidity, water vapor mixing

ratio, relative humidity, and others.

3.1.1 Water Vapor Relationships. The fundamental measured quantity of

atmospheric water vapor content is the dew-point temperature (TDP ): the temperature

to which a given parcel of air must be cooled at constant pressure for it to reach

saturation. From TDP , we can calculate the vapor pressure (es) – the partial pressure

contribution of water vapor in a volume or parcel of air, measured in hectopascals

(hPa) – as:

es(TDP [
◦C]) = 6.122 exp

[
17.67·TDP

TDP + 243.5

]
. (24)

The vapor pressure can then be used to calculate both the mixing ratio (w) –

the mass of water vapor per unit mass of dry air in a given parcel – and the specific

humidity (q) – the mass of water vapor per unit mass of the moist air parcel – using

the following two closely-related formulas:

w = ǫ
es

P − es
, (25)

q = ǫ
es

P − (1− ǫ)es
, (26)

where P is the air pressure in hPa and ǫ = 0.622 is the ratio of masses for equal

quantities of water vapor and dry air (note that since ǫ < 1, water vapor is less dense
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than dry air). The specific humidity can be used to calculate the virtual temperature

(Tv) – the temperature to which a parcel of dry air must be heated for it to have the

same density as moist air at the same pressure – as:

Tv = T



1 +

w

ǫ
1 + w


 ≈ T (1 + 0.6w), (27)

where T is the temperature of the moist air parcel. The air density (ρ) can then be

calculated:

ρ =
P

RdTv

, (28)

where Rd = 287J/kg/◦K, P is in N/m2 or pascals (Pa), and Tv is in
◦K. We can use

the air density to find the vapor density (ρv), also known as the absolute humidity in

kg/m3:

ρv = ρq. (29)

The transmittance t(z), or the ratio of the radiation reaching the target to the

radiation incident on the top of the atmosphere as a function of the target altitude z,

depends on both the mixing ratio w and the density ρ as follows:

t(z) = exp

[
−kawρH

µ

]
, (30)

where ka is the mass absorption coefficient and µ is the cosine of the zenith angle [39].

We observe from these equations that atmospheric transmission depends on

both density and pressure; that these are related to each other by dew-point temper-

ature, atmospheric temperature, and pressure; and that they determine the absolute

humidity. We also observe from our meteorological measurements (described in detail
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in Section 3.4.1) that variations in dew point and temperature are themselves highly

correlated with each other.

Because we are examining the relationship between atmospheric water vapor

content and spectral transmission, we describe the distance between atmospheres as

the Euclidean distance (ED) between the measures of four parameters that describe

the profile taken at four altitudes in the boundary layer. In particular, we use the

dew-point temperature in ◦C, water vapor mixing ratio w (in grams of H2O per

kilogram of all other gasses as in Eqn. (25)), absolute humidity ρ (grams of H2O per

cubic centimeter as in Eqn. (29)), and air density (as in Eqn. (28)) because these

measures of water vapor are the most independent. (Relative humidity, for example,

is dependent on both atmospheric temperature and dewpoint temperature.) The

formula for the ED is shown in Eqn. (31), where m is the measure of water vapor

content as a function of radiosonde layer zi and atmospheric profile aj and where

{a1, a2} are the two atmospheric profiles under comparison.

d(a1, a2) =

√√√√
4∑

i=1

(m (a1, zi)−m (a2, zi))
2 (31)

m ∈ {TDP , w, ρ, ρv}

zi ∈ {0m, 500m, 1000m, 1500m}

We also use the ED to describe the distance between spectral measurements m

taken at 887 frequencies between 3984 − 27020cm−1 by transmission (t), reflectance

(r), and sensor reaching radiance (Rsr) as shown in Eqn. (32).
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d(a1, a2) =

√√√√
887∑

i=1

(m (a1, zi)−m (a2, zi))
2 (32)

m ∈ {t, r, Rsr}

zi ∈ {3984− 27020cm−1}

3.1.2 Water Vapor vs. Radiance Euclidean Distance Relationship. In the

following section, we present analysis of the different EDs to assess their relationship

to changes in spectral radiance at the sensor. Results are presented in Fig. 7, where the

x -axis is the ED between the atmospheric profile, as defined by four measures of water

vapor content, as it appears in the 1st percentile (“most dry”) of the distribution and

all higher percentiles of that distribution. In the first column, that measure of water

vapor content is the dew point temperature in oC; in the second column, the absolute

humidity in kilogram of H2O per cubic meter; in the third column, the mixing ratio in

grams of H2O per kilogram of dry air; in the fourth column, the density of the air in

kilograms of air per cubic meter (kgair/m
3). Note that the x -axis, with the exception

of that for density, is labeled by percentile rather than by the ED values themselves.

In the fourth column, in which the x-axis shows the ED between the atmospheric

profiles as measured by air density, we cannot label the x-axis with the percentiles

because the nominal percentiles do not increase monotonically with the density for

all altitudes in the boundary layer. As we discuss in Section 3.4.1, between the 10th

and 20th percentiles of surface relative humidity, the temperatures obtained from the

LEEDR database decrease even as the humidty increases. This effect is shown in

Fig. 16 and affects the density calcuation by Eqn. (28).

In the first row of graphs in Fig. 7, the y-axis is the ED between the total

atmospheric transmittance – from the top of the atmosphere to the target to the

sensor – as simulated under the 1st percentile atmosphere and those simulated under

all other percentiles. In the second row of Fig. 7, the y-axis is the ED between
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the “true” target reflectance (again using the 1st percentile of the distribution as the

baseline) and its reflectance as estimated under atmospheric profile assumptions based

on other percentiles of the distribution. In the third row of Fig. 7, the y-axis is the

ED between the radiance reaching the sensor as reflected by the target as simulated

under the 1st percentile and all other percentiles. While our initial examination

included varying the choice of the percentile chosen as the baseline, we discovered

that the shape and scale of the resulting relationship was largely independent of that

choice. Note that the second and third rows also show the effect of targets with non-

uniform emissivity. Specifically, they consider the built-in MODTRAN emissivities

of “cropland,” “deciduous tree,” “galvanized metal,” and “olive paint” as the target

spectra [49].

Several generalizations can be made from these relationships. Controlling for

choice of vapor content measure (i.e., dew point, mixing ratio, absolute humidity,

and density), the relationship between atmospheric transmission, estimated target

reflectance, and sensor reaching radiance is approximately linear. This validates our

expectation that the contribution of atmospheric emission to sensor reaching radiance

is negligible. Thus, the sensor reaching radiance is approximately the product of the

constant solar radiance and the atmospheric transmission for a given target. The

target reflectance, in turn, is obtained from the ratio of sensor reaching radiances for

the different atmospheres. We also see that the relationship between the absolute

humidity and water vapor mixing ratio is also linear; as indicated by Eqn. (29), this

is expected for q << 1.

As we can see from Fig. 7, the relationship between the ED of the estimated

target reflectances (second row) and sensor reaching radiances (third row) and the

various measures of atmospheric distance, while highly linear, are also highly target-

dependent for the amount of change in radiance distance a given atmospheric distance

will cause. We calcuated the spectral energies Ws of the sensor-reaching radiances for

each target as
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Figure 7: Plot of the ED between atmospheric water vapor content profiles (x-
axis) and the EDs between total atmospheric transmittances, target reflectances, and
sensor-reaching radiances as modeled under those profiles (y-axis). Wi is the radi-
ance from the sun incident on the top of the atmosphere. Wt/Wi is the atmospheric
transmittance, the percent of the solar radiance that propagates through the atmo-
sphere, whileWr/Wi is the target reflectance, the percent of the incident solar radiance
reflected.
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Ws =
N∑

i=1

Riδw, (33)

where N is the number of spectral bands, Ri is the radiance at each band, and δw is

the full width half maximum of the band. In general, we can see from Table 2 that

the higher the overall radiance energy from a particular target (as measured by the

magnitude of the radiance scaled by the spectral resolution), the greater the slope of

the plot.

Table 2: Table of spectral energies (magnitude scaled by the spectral resolution) of
four targets signatures.

Target Spectral Energy (µW/cm2/str)

Cropland 8.3101
Deciduous Tree 14.505
Galvanized Metal 12.392
Olive Paint 14.511

Otherwise, we see that while all relationships are highly correlated, they vary

subtly depending on the choice of water vapor measurement. Mixing ratio and ab-

solute humidity show an exponentially diminishing relationship with radiance. To

develop an understanding of this, we consider the derivative of Eqn. (30) as a proxy

for the Euclidean distance between the transmittances corresponding to different pro-

files. We begin by substituting Eqn. (27) into Eqn. (30), which yields

t = exp

[
−kawρ0H

µ
exp

(
− z

H

)]
= exp

[
−kaHw

µ

P

(1 + 0.6w)RdT
exp

(
− z

H

)]
(34)

Taking the derivative with respect to the mixing ratio w yields
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dt

dw
=

[
µ(1 + .6w)RdT )(−kaHP )− (−kaHwP )(.6µRdT )

µ2(1 + .6w)2R2
dT

2

]
exp

(
− z

H

)
· . . .

exp

[
−kaHw

µ

P

(1 + 0.6w)RdT
exp

(
− z

H

)]
(35)

=

[
− kaHP

µ(1 + .6w)2RdT
exp

(
− z

H

)]
· exp

[
−kaHw

µ

P

(1 + 0.6w)RdT
exp

(
− z

H

)]

We can observe from Eqn. (35) that as the mixing ratio increases, the absolute value

of the derivative of the transmittance decreases. Thus, we would expect that at higher

humidities, further changes in the humidity would have a diminishing impact on the

transmittance.

Likewise, we can consider the derivative of the transmittance with respect to

the absolute humidity ρv = pq ∼= ρw:

dt

dρv
= −kaHρv

µ
exp

(
− z

H

)
exp

[
−kaρvH

µ
exp

(
− z

H

)]

which again predicts that marginal changes to humidity have less effect at higher

absolute humidity.

Further, Fig. 7 shows that dew point has a near perfect linear relationship. Den-

sity shows a noticeable discontinuity between the 10th and 20th percentiles; this reflects

the decrease in the recorded temperature data corresponding to these percentiles in

what is otherwise a positive correlation with relative humidity.

3.2 Target Detection with the AMF

After we use the atmospheric profiles to simulate a hyperspectral image cube,

we then use the target signatures in the spectral library to detect those targets in the

image. As discussed, there are many detectors available. We have chosen the AMF

because of its popularity in the hyperspectral community. Validating our results with

other detectors remains an objective of future research.
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3.3 Evaluating Target Detection Error

We observe in Section 3.1.2 that changes in water vapor content in the boundary

layer result in changes in the spectral output and that these changes, when measured

by the Euclidean distance, bear an approximately linear relationship. We now wish

to briefly examine the impact these changes have on the output of the AMF.

3.3.1 The Bhattacharyya Coefficient. To begin this evaluation, we choose as

our metric the Bhattacharyya coefficient (BC). The Bhattacharyya coefficient mea-

sures the separation of two probability mass functions (PMF’s) or normalized his-

tograms. The Bhattacharyya coefficient is calculated by dividing the elements of each

distribution into an arbitrary number of bins based on their values. It then applies

the following formula:

BC =
∑

i

√
pi · qi,

where pi and qi are the fraction of PMF’s p and q that fall within the ith bin. Thus,

the values for the coefficient should range between zero (for no overlap between the

distributions) to one (for complete overlap). If there are N atmospheric profiles

under consideration, then we generate N(N−1)
2

Bhattacharyya coefficients between

them. While the Bhattacharyya coefficient was originally supposed to require that the

underlying data be Gaussian [45], it has since been shown that it works for arbitrary

distributions [44], and is thus used here.

To evaluate the effect of atmospheric changes using the Bhattacharyya coeffi-

cient, we undertake the process shown in Fig. 8. We generate a set of DIRSIG images,

each from one of the nine atmospheric profiles corresponding to the nine boundary

layer water vapor percentiles. We then pick a new target set, choosing targets with

sufficient in-scene spectral variation to usefully model, and use the average of the in-

scene target pixels in each distribution to generate the target signatures corresponding

to that distribution. Finally we compare the distributions of the outputs of the AMF
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for the target classes obtained from each distribution against all other distributions.

The results of this comparison are shown in Fig. 9 [50]. Here, the y-axis shows the

value of the Bhattacharyya coefficient, while the x-axis is scaled to the corresponding

Euclidean distance between the dew point temperature profile in the boundary layer

(as described in Section 3.1.2) associated with the percentile as labeled on the x-axis

and that of the percentile serving as the baseline.

The results for measuring the Bhattacharyya coefficients between the reference

distribution of the AMF output for each target and the distributions obtained under

other atmospheric profiles are as expected. The comparison of the AMF output for

each target and profile with itself results in a Bhattacharyya coefficient equal to one,

representing perfect overlap. While some variation is noted, the generality is that the

Define nine atmospheric 
profiles in .tp5 file format 

(LEEDR)

Generate nine image 
cubes (DIRSIG)

Create target spectral 
library (DIRSIG)

Convert image data from 
radiance to reflectance

Use AMF to detect 
targets in image 

(MATLAB)

Report Results
- Bhatt
- ROC
- AUC

Figure 8: Process flowchart detailing methodology that performed detection in
radiance space using target spectra taken from class averages as they appear in the
fiftieth percentile DIRSIG image.
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Figure 9: Plots of Bhattacharyya coefficients comparing the AMF output corre-
sponding to the indicated percentile of the distribution of atmospheric water vapor
to that corresponding to the other eight percentiles. We observe lower coefficients the
greater the percentile separation, and therefore the water vapor content, between the
atmospheric profiles. 43
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greater the difference in the water vapor content between the atmospheric profiles over

the target, the lower the commonality, as measured by the Bhattacharyya coefficient,

between their AMF outputs.

However, although the Bhattacharyya coefficient confirms our intuition that

changes in the atmospheric water vapor content result in changes to the output of the

AMF, it does nothing to estimate the effect on system performance. To understand

the effect on detection, we must evaluate the AMF output using the receiver operating

characteristic (ROC) curve, or variants thereof (i.e., the AUC).

3.3.2 AMF Detection with Atmospheric Error: a Pedagogical Example. The

problem of mis-estimation of the atmospheric parameters and the consequent incor-

rect atmospheric correction is one of essentially searching for a target in the wrong

hyperspectral space. The precise effect this error has is dependent on a multitude

of variables: the relative locations of the target, the overall background, and specific

decoys as well as their covariance matrices.

To illustrate the interaction of these dependencies, we apply the AMF to two

dimensional sets of Gaussian random variables of known means and covariances. By

limiting ourselves to two dimensions (analogous to wavelengths in our actual and

simulated hyperspectral images), we can easily visualize the location of all variables

in hyperspectral space by use of scatter plots. We then systematically mis-estimate

the target location for repeated applications of the AMF and calculate the AUC as a

function of that mis-estimation.

Illustrative of our results is Fig. 10. In Fig. 10(a), we show a scatter plot

showing the target with a hyperspectral location of (1, 1) (the blue circles) and a

close decoy at (1.3, 1.3) (the red circles) against a background centered at (2, 2) (the

yellow circles). The black axes are centered at the background mean. In this example,

the dimensions of the background are negatively correlated (henceforth referred to as

having a negative covariance). We describe the covariance of the target and the decoy

as horizontal – i.e., showing greater variance along the x-axis than along the y-axis
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Figure 10: Scatter plots of targets, decoys, and background in two-dimensional
hyperspectral space and the associated AUC plots by estimated target location. The
true target (µt) and decoy (µd) locations, along with their covariance matrix (Σ) are
indicated in the scatter plots. The background covariance is negative.
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– but their dimensions are otherwise uncorrelated. Also shown in this figure are the

contour lines corresponding to the output of the AMF at each location; these are

essentially linear discriminant functions (LDFs) [24] at different detector thresholds

under the condition of perfect knowledge of the target location. Thus, the gradient of

this contour runs directly from the mean of the background to the mean of the target

as adjusted for the background covariance.

We then apply the AMF to a range of estimated target locations running in

a straight line between (1.5, 0.5) and (0.5, 1.5). (In all examples, this line is kept

orthogonal to the gradient of the LDFs, as it is only along this direction that we

would expect changes to the AUC.) Consider first the estimated target location of

(1.5, 0.5). Spatially, this point lies below and to the right of the true target location.

We can easily visualize that an LDF with a gradient in this direction would, at any

given threshold, mis-classify the background pixels in the fourth quadrant as target

pixels, elevating the Pfa and lowering the AUC. However, because of the horizontal

orientation of the target and background covariances, this actually improves the LDFs

ability to distinguish between them.

In contrast, consider the estimated target location of (0.5, 1.5). This point

lies above and to the left of the true target mean. Again our LDFs generate an

elevated number of false alarms, this time in the second quadrant. But now the

horizontal orientation of the target and decoy work against us; they become more

difficult to distinguish because their overlap along this gradient is much larger. Thus,

the performance of the ROC deteriorates and the AUC shrinks.

These trends are illustrated in Fig. 10(b), where we plot the AUC for the AMF

detection of the target against the entire background (the red line) and the decoy

pixels only (the blue line). The AUC for detection against the background peaks at

the true target location (1, 1), and deteriorates as we move away from it. The AUC

for detection against only the decoys peaks as we search at (1.5, 0.5) and troughs at

(0.5, 1.5) as we expected. Note that the AUC for detection against decoys is in all
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cases lower than the AUC against the background; this is because the means are much

closer and the overlap is much greater.

We reverse the orientation of the target and decoy pixels in Fig. 10(e) from hor-

izontal to vertical. As we can see in Fig. 10(f), while the detection results against the

background remain largely unchanged, the advantage for detection against the decoy

now occurs at the location (0.5, 1.5) where the AUC peaks. This is consistent with the

LDFs being now aligned towards the vertical direction and thus better discriminating

between target and decoy pixels.

When the covariance matrices of target and decoy are circular as in Fig. 10(c),

there is no advantage to mis-estimating the target location. As we can see in

Fig. 10(d), the AUC peaks at the true target location of (1, 1) for both detection

against the background and detection against the decoy.

We perform further experiments illustrated in Fig. 11. In Fig. 11(a), we have

now reversed the covariance of the background itself from negative to positive. This

puts both the target and decoy pixels amidst a much greater number of background

pixels – so much greater, in fact, that the background now generates proportionally

more false alarms than the decoy. The result is shown in Fig. 11(b), where the AUC

curve for the background detection lies below that for the decoy detection.

In Fig. 11(c), we move the target and background pixels to the 2nd quadrant

while keeping their relative orientation. As we can see from the LDFs, the target and

decoy are almost indistinguishable to the AMF. By pointing the AMF away from the

true target location to a point below and to the right of it, we can improve the detector

performance even though the target and decoy covariances are circular; however, as

we can see from Fig. 11(d), the AUC for the decoy is now much lower than it has

been in all previous examples.

Finally, in Fig. 11(e) we move the target and decoy to the 1st quadrant. Signif-

icantly, the decoy is now further away from the background mean than is the target

along both dimensions. Thus, as we can see from Fig. 11(f), the AMF consistently
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Figure 11: Scatter plots of targets, decoys, and background in two-dimensional
hyperspectral space and the associated AUC plots by estimated target location. The
true target (µt) and decoy (µd) locations, along with their covariance matrix (Σ) are
indicated in the scatter plots. The target and decoy covariance matrix is circular.
The background covariance is positive.
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ranks the decoy higher than the target regardless of the search direction; thus the

AUC values for the search against the decoy is below the level of random guessing

and troughs at the true target location.

These figures illustrate our premise that the distribution of the target and var-

ious decoys in relation to the covariance eigenvectors directly impacts the shape of

the resulting ROCs and AUCs for that target. We move on to see that the shapes

of ROCs and AUCs for simulated targets against a representative background are

similarly variable.

3.3.3 Determining the Best Atmospheric Assumptions. Given the uncer-

tainty associated with the true atmospheric conditions in effect at the time of any

particular image, our intution is that the maximum likelihood estimate of those condi-

tions would lie at the middle of their historic distribution. However, this is an intution

only; testing it requires that we consider the AUC for our detector as a function both

of the true atmospheric profile and the estimate we make about it. This leads us to

the use of contour plots. Further, by summing the AUC outputs across the range of

true atmospheres for each estimated atmosphere, we can identify which estimated at-

mosphere maximizes the detector performance, given our uncertainty. We review the

results of this analysis in Chapter IV in their entirety; however, below is an example

of what we produce. As we see in Fig. 12(a), the best atmospheric assumptions, as

indicated by the vertical dotted line, can conform to our intution by residing at the

50th percentile. However, depending on the target, the optimum assumption can be

well away from that percentile, as we see in Fig. 12(b).

3.4 Simulation Methodology

Determining how the relationship between the estimated and true atmospheric

profiles affects the performance of the AMF in target detection requires that we

simulate imagery acquired under a range of atmospheric conditions. In this section
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Figure 12: Two examples from Appendix D of contour plots of the AUC for AMF
detection of automobiles of the indicated colors as a function of estimated atmospheric
profile (x-axis) and true atmospheric profile (y-axis), measured in percentiles of their
historic distribution of relative humidity.

we provide introductory information on the modeling and simulation environments

used to generate the data used in our study and described in Fig. 13.

We begin by using the Laser Environmental Effects Distribution Reference

(LEEDR) to generate a set of atmospheric profiles as described in Section 3.4.1.

We integrate those profiles into a set of configuration files called “TAPE5” files that

MODTRAN uses to calculate the expected radiance spectrum reaching the sensor

from a target with a uniform reflectance of one, as described in Section 3.4.2. We

then choose the spectrum corresponding to the fiftieth percentile atmospheric profile

to generate a hyperspectral image cube from a three-dimensional scene model using

the Digital Imaging and Remote Sensing Image Generation Model (DIRSIG) as de-

scribed in Section 3.4.3. We re-condition this image as if it were simulated under

other profiles and convert the image from radiance to reflectance values. Finally, we

run the AMF against the designated target set using the reflectance spectra contained

in the DIRSIG’s material database, and present our results.
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We repeat the process, continuing to use the fiftieth percentile image but using

MODTRAN to generate radiance spectra corresponding to each of the other per-

centiles for which LEEDR can provide atmospheric profile data. By dividing the

image by the different radiance spectra, we simulate the error conditions which un-

known atmospheric variation create.

3.4.1 Atmospheric Parameters. Because our objective is to characterize

the uncertainty associated with the estimate of atmospheric parameters on the ra-

diative transfer algorithm, we must have measured atmospheric data showing the

historic distribution of those parameters about their accepted median values. One

such database was developed by the Air Force Institute of Technology (AFIT) Center

for Directed Energy under sponsorship from the High Energy Laser Joint Technology

Office (HEL JTO). The program is called High Energy Laser End to End Opera-

Define Atmospheric 
Profile in .tp5 file format 

(LEEDR)

Generate image cube 
(DIRSIG)

Generate sensor reaching 
radiance for η=1 

(PLEXUS)

Create target spectral 
library (DIRSIG)

Resample Radiance 
Profile to ARTEMIS 
frequencies (ENVI)

Resample target 
signatures to ARTEMIS 

frequencies (ENVI)

Convert image data 
from radiance to 

reflectance

Use AMF to detect 
targets in image 

(MATLAB)

Produce Results

- ROC Curves

- AUC Calculations

Figure 13: Process flowchart detailing methodology that performed detection in
reflectance space using PLEXUS-generated radiance data to convert image data cube
to reflectance.
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tional Simulation (HELEEOS), which is used to predict atmospheric affects on di-

rected energy weapons [17]. The worldwide atmospheric characterizations employed

in HELEEOS are based on the same databases and algorithms used in the LEEDR

program. LEEDR was developed by the AFIT Directed Energy Center under the

combined sponsorship of HEL JTO and the Air Vehicles and Sensors Directorates

of the Air Force Research Lab (AFRL). The associated parameters are obtained for

eight different time-of-day ranges, on a particular month of the year, and expressed

at nine different percentiles: 1%, 5%, 10%, 20%, 50%, 80%, 90%, 95% and 99%.

These atmospheric profiles express both temperature and dew point at various

pressure altitudes. Other parameters are available; however, these are calculated

from mathematical models of these first three parameters (temperature, dewpoint,

and pressure).

3.4.2 PLEXUS. With atmospheric profile information provided by

HELEEOS and LEEDR, it is possible to apply MODTRAN to a specific target and

scene geometry to obtain the sensor reaching radiance. This is accomplished with

the Phillips Laboratory EXpert User Software (PLEXUS). PLEXUS applies a radia-

tive transfer model (specifically MODTRAN) to an atmospheric profile, various other

weather conditions, and scene geometry to generate a sensor reaching radiance. This

radiance, when multiplied by a target reflectance spectrum, yields the spectrum of a

particular target as seen by the sensor under the particular conditions.

In our experience, PLEXUS showed itself to be too cumbersome and unstable

an operating environment for producing multiple spectra under different user-defined

atmospheric profiles. However, PLEXUS was able to render correctly the scene ge-

ometry and other settings in the TAPE5 format, which we successfully fed as inputs

to MODTRAN.

3.4.3 Image Simulation. Image data are simulated using a program devel-

oped by a team from Rochester Institute of Technology called DIRSIG [42]. This sim-
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ulation environment allows three-dimensional scene construction including the size,

shape, and placement of objects in relation to other objects. It allows the simulation

of a variety of imaging devices, platforms and mission profiles. Its output takes into

consideration not only atmospheric conditions, location, and solar illumination, but

adjacency effects and the Bidirectional Reflection Distribution Function (BRDF) as

well. We use DIRSIG to simulate a single-capture data cube as collected from the

AVIRIS platform [21]. The MODTRAN module of DIRSIG allows the user to sim-

ulate the images as they would be collected under user-defined atmospheric profiles.

By varying these profiles according to their distribution at the target location, we

develop a set of images corresponding to those distributions.
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IV. Results

4.1 Data

4.1.1 DIRSIG-Generated Imagery. The DIRSIG image cube is generated

using the assumption of standard atmospheric conditions corresponding to a clear,

mid-latitude summer day. We use the Megascene, RIT’s model of northwest suburban

Rochester [28]. The Megascene came with a reflectance library of 47 spectrally distinct

material types. To these we add additional material types spectrally representative

of 41 different automobiles. These materials are mixed in various proportions, in

increments of one nin th, for each pixel. We then simulate an image cube as collected

by the AVIRIS sensor [21] imaged at nadir (zenith = 180◦) from 10,000 feet AGL on

Figure 14: The RGB representation of the simulated hyperspectral image of
DIRSIG’s “Megascene” RIT’s by-element construction of a Rochester NY suburb [28].
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1 June 2001 at 1300L. The elevation of the scene is simulated at 300m and its location

at 43◦ latitude and 77◦ longitude. A red, green, and blue (RGB) color component

representation of the hyperspectral data cube is shown in Fig. 14. Our detections are

run on square panels composed of the 41 vehicle types inserted into the model.

The nearest LEEDR site to the city of Rochester, the site of our DIRSIG image,

is Griffiss AFB in Rome, New York [2]. Since our image is simulated as taken at 1300L

on 1 June 2001, we generate our nine atmospheric profiles for Griffiss AFB in June

between 1200L - 1500L.

Table 3: List of car colors and their material identification numbers that appear in
the “megascene” image. Each material ID indicates a specific automobile. Note that
there are often more than one car of the same color.

Automobile Color Material IDs

black 20102, 20104, 20118, 20122, 20124, 20126, 20127, 20130,
20135

blue 20107, 20137

blue w/black top 20133

brown 20125

charcoal gray 20140

cranberry 20136

dark blue 20106

gold 20108, 20110, 20116, 20139

gray 20141

gray w/black top 20120

green 20123, 20132

light gold 20115

maroon 20105, 20128

red 20111, 20117, 20131

red/silver 20138

silver 20109, 20112, 20114, 20119, 20121, 20129, 20134

steerling 20113

white 20101, 20103
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The spectral library contains multiple spectra for each material type based on

different assumptions made about the illumination conditions. The number and reso-

lution of these spectra differ between material types. Unfortunately, there is presently

no way in DIRSIG for the user to know which of these spectra was used to make the

final radiance calculation. This problem is overcome by averaging the spectra together

to form the target signature.

4.1.2 Target Set. We insert 41 panels into Megascene, where the panels

have spectral properties derived from measurements taken from 41 automobiles [1].

The reflectance spectrum for each vehicle was taken multiple times to ensure that

the simulated image contained the natural variation of the automobile in question.

The automobiles came in 18 different colors as listed in Table 3. Next to each of

these colors is listed the material identification number(s) of the panels bearing that

color, each panel corresponding to a specific automobile. For instance, nine of the

automobiles were judged to be the color “black” in the judgment of the data collection

team.

In Fig. 15, we show the reflectance spectra for four automobiles. (The re-

flectance spectra for all other automobiles are shown in Appendix A.) The black

dotted lines represent the spectra as they are taken from the spectra library; it is

these spectra the AMF uses as a signature database. The colored spectra are as they

appear in the simulated DIRSIG image after atmospheric correction using the per-

centile indicated. We can see that adjacency and mixed pixel effects introduce a bias

to the target spectra apart from the atmospheric effects, which are most salient at

the 0.97µm, 1.2µm, 1.4µm and 1.9µm water vapor absorption bands. Following com-

mon hyperspectral image processing protocols, we remove the water vapor absorption

bands from consideration; however, there is still considerable effect at the periphery

of those bands, plus smaller effects in all bands not readily visible at this figure scale.
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Figure 15: Reflectance spectra for the automobiles indicated. The “true” spectra
(heavy black dashed line) are taken from the spectral library and were calculated as
the average of all the truth measurements of the specific automobile. The estimated
spectra, indicated by the atmospheric percentiles used for the estimation, represent
the average of the image pixels bearing the specific material ID.
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4.1.3 Atmospheric Data. We show the distribution of the dew points and

temperature in Fig. 16 at four altitudes inside the boundary layer as a function of

percentile. (LEEDR does not vary the atmospheric parameters by percentile above the

boundary layer, but rather assigns each layer its regional average, i.e. “mid-latitude

north summer” in this case.)

As mentioned in Section 3.1.2, we note the non-monotonic nature of the temper-

ature profile, in particular the drop in atmospheric temperatures between the 10th and

20th percentiles of surface relative humidity, causing the “kink” in the Euclidean dis-

tance relationships involving density in Fig. 7. Future research should obtain access to

the LEEDR data set and separate these two factors into a genuinely two-dimensional

probability distribution of the parameters. For this work, however, we take the tem-
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Figure 16: Plots of the atmospheric dew point percentile versus (a)the dew point
value and (b) the atmospheric temperature in ◦F corresponding to that percentile.
Four altitudes and an arbitrary Gaussian CDF are shown; LEEDR shows no variation
by percentile for higher altitudes. Note that the atmospheric termperature decreases
between the 10th and 20th percentiles of the dew point.

58



www.manaraa.com

peratures in Fig. 16(a) to represent average values of measurements corresponding to

the indicated percentiles of humidity in Fig. 16(b).

Fig. 9 previously showed that the Bhattacharyya coefficients for the AMF output

generated for reflectances calculated under the 1st thru the 99th atmospheric water

vapor percentiles suggested that there is insufficient granularity between those nine

percentiles. Generally, we see in Fig. 9 that while the Bhattacharyya coefficient

peaks at the 50th percentile, as we would expect given that the AMF distributions

are mathematically identical under that assumption, there is little variation and no

consistent pattern among the other percentiles. This confounds our prediction that

the Bhattacharyya coefficient would steadily decay the further the true atmospheric

water vapor content diverged from the assumed value at the 50th percentile. The rapid

falloff in overlap followed by relative insensitivity to increased profile error indicates

the possibility that most of the degradation occurs between the 20th and the 80th

percentiles.

We therefore interpolate between the values of the atmospheric water vapor

content as were provided in the LEEDR database. We use cubic interpolation to

estimate the atmospheric parameters at the 25th, 30th, 35th, 40th, 45th, 55th, 60th,

65th, 70th, and 70th percentiles of the historic distribution. It is these values, along

with the measured value at the 50th percentile, that we use throughout the remainder

of this dissertation.

4.2 Receiver Operating Characteristic as a Function of Atmospheric

Percentile

4.2.1 The ROC Explained. The receiver operating characteristic (ROC)

curve is a useful tool in evaluating the overall ability of a detector to distinguish

between target and background. A target detector typically considers some quality

about an object (e.g., a reflectance spectrum), evaluates it by some critierium (e.g.,

a library spectrum), and produce a number measuring the relative strength of the

congruity between the object and the criterion (e.g., the output of the AMF). A
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decision threshold then attempts to separate the objects of the class being sought

(the target class) from those of the background class (collectively, the background

class is all other classes). The efficacy of a particular threshold can be evaluated

by comparing two numbers: the probability of detection (Pd, the percentage of the

members of the target class correctly identified) and the probability of false-alarm

(Pfa, the percentage of the members of the background class incorrectly identified).

A ROC curve plots the Pd against the Pfa for every threshold at which a target

class member is evaluated. The resulting graph provides an easy way of evaluating

the strength of the classifier independent of both a particular threshold and the target

density [13], [27].

4.2.2 ROCs by Target. The ROC curves for four automobiles are shown

in Fig. 17. (All other ROC curves are shown in Appendix B and Appendix C.) As

described in Section 3.4, we condition the image on different percentiles of the at-

mospheric distribution at the target site; these percentiles are indicated in the figure

legend. We then estimate the image reflectances based on the assumption that the

atmospheric conditions were at the 50th percentile. Finally, we perform an AMF

target detection for the automobile panels using the panel’s reflectance spectrum as

contained in the spectral library. Our expectation is that the best detection per-

formance is for the atmospheric profile that matches our assumption and that the

performance will grow progressively worse the more the truth diverges from that as-

sumption. Note that while the covariance matrix of the AMF is calculated from the

entire image as corrected to the 50th percentile assumption, the Pfa’s are calculated

considering only other automobiles of the same color. For example, the ROC curves

shown in Fig. 17(d) are generated by successfully distinguishing white car #20103

from white car #20101, not from the background as a whole. This is representative

of the hardest case; our hypothesis is that the mis-estimation of the atmospheric wa-

ter vapor profile for purposes of atmospheric correction will have the most significant

impact on our ability to separate targets that are spectrally similar.
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Figure 17: Receiver Operating Characteristic (ROC) curves for AMF detection of:
(a) green car #20132; (b) gold car #20108; (c) silver car #20114; and (d) white car
#20103. The “estimated” atmosphere used to convert the image radiance measure-
ments to reflectance was the 50th percentile; the “true” atmosphere used to simulate
the image radiances are indicated in the legend. Note that the probabilities of false
alarm (Pfa) are calculated from only among cars of the same color as the target car.
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We can make several observations about the resulting ROC curves. For three

of the automobile panels – Gold, Silver, and White – we observe the best detector

performance corresponding to a true atmospheric profile at the 50th percentile (i.e., the

one matching our assumption). However, for the Green automobile panel, we see that

the detector performance continues to improve as the true atmospheric profile becomes

more dry, approaching the 30th percentile in the distribution. This counter-intuitive

result suggests the converse possibility: for certain targets, the optimum atmospheric

profile estimation may be other than the 50th percentile of the distribution. We

explore this possibility later in Section 4.4.

We also note several differences between the graphs. The overall effect of the

mis-estimation varies between the targets. It appears that it has the least effect on

the Green car and the most effect on the Gold car. We also see that, while, with the

exception of the Green car, performance degrades the further away the estimate from

the true profile, this degradation is lopsided. For instance, in Fig. 17(b), we see that

the performance for the 60th and 70th percentiles is worse than for the 30th and 40th

percentiles, in Fig. 17(c) the performance for the 30th and 40th percentiles is worse. It

is our belief that these differences are due to the relative distributions of the targets

and decoys in hyperspectral space compared to that of the background, as illustrated

by our anlaysis in Section 3.3.2.

4.2.3 ROCs by Percentile. In Fig. 18, we have organized the results differ-

ently. For the 41 cars for which we have more than one car of each color, we have

organized the in-color ROC curves at each atmospheric profile by plotting the 25th,

median, and 75th percentile values of the Pd for each value of the Pfa. In other words,

for each value of the Pfa, we order the Pds of the 41 automobiles from highest to low-

est. We then plot the Pd versus Pfa for the 10
th, 21st, and 32nd highest Pd values. The

generality from Fig. 17 continues to apply: we see that as the true atmospheric profile

approaches the estimated atmospheric profile of 50% (Fig. 18(e)), the detector perfor-
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mance continues to improve such that higher accuracies become possible. However,

to confirm this observation, we further evaluate and quantify them in Section 4.3.

63



www.manaraa.com

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(a) 30%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(b) 35%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(c) 40%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(d) 45%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(e) 50%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(f) 55%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(g) 60%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(h) 65%-ile Profile

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
fa

P d

(i) 70%-ile Profile
  
25th %−ile Car Median Car 75th %−ile Car

Legend

Figure 18: In-color ROC curves for the median, 25th percentile, and 75th per-
centile automobile. The “estimated” atmosphere used to convert the image radiance
measurements to reflectance was the 50th percentile; the “true” atmosphere used to
simulate the image radiances are indicated for each figure. The percentiles indicated
in the legend refer to order of each car’s ROC curve, from lowest to highest.
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4.3 Area under the Curve (AUC) as a ROC Performance Measure

While a visual inspection is often sufficient to recognize which of several ROC

curves plotted on the same axes indicates a superior detector (as measured by yielding

high Pd values at low Pfa values), the large number of comparisons we wish to make

require us to reduce the ROC performance to a single number. To this end, we measure

the detector performance by calculating the area under the ROC curve (AUC) [8].

The AUC allows us to avoid the difficulty of picking a threshold for detection, gives us

a metric that is insensitive to the relative frequency of our target pixels in the image,

and tells us the probability that a randomly chosen target pixel will be ranked higher

than a randomly chosen background pixel [13]. The AUC is sufficiently robust that its

use can be extended to other purposes [48], including multi-classification systems [23].

In Fig. 19, we plot the AUC against the percentile of the true atmosphere for nine

automobile panels corresponding to vehicles for which we have only one target per

color. In all cases, the estimated atmospheric profile is at the 50th percentile. Because

we cannot do in-color detections for targets whose colors are unique, we instead create

the ROC curves two different ways: 1) by calculating the Pfa considering only pixels

in the class of automobiles; and 2) calculating the Pfa considering all background

pixels. Our hypothesis is that automobile paints will bear spectral similarities to each

other irrespective of color compared to other background materials.

We observe from Fig. 19 that the previously stated hypothesis is generally cor-

rect. The black lines represent detections against the entire background. For most

percentiles of the distribution, the black lines are above the blue lines representing

detections against only other automobile target pixels.

We observed earlier that the effect of atmospheric mis-estimation is often asy-

metric. Likewise here in Fig. 19(a) and Fig. 19(b), the effect of underestimating at-

mospheric water vapor content when it is at the high end of the historical distribution

is much more dramatic (and bad) than when we overestimate the water vapor content

when it is at the low end of the distribution. We can explain this effect in terms of
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Figure 19: AUCs from AMF detection of automobiles of the indicated colors. We
show results both from target detections against the entire image background (black)
and against only other automobiles of all colors (blue).
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the relative distribution of the target pixels in hyperspectral space with respect to

that of the background, as we saw in our example illustrated in Section 3.3.2.

Finally, while we can see that the AUC tends to peak at true atmospheres at the

50th percentile, there are exceptions. Most notably in Fig. 19(c) and (e), we see that

the best detection performance is when water vapor content is at its highest value.

This, too, was predicted in Section 3.3.2.

In Fig. 20 and Fig. 21, we present results for autmobiles for which there are

multiple targets per color. In these graphs, the solid lines are AUC plots of in-color

detections for the individual automobiles indicated in the plot legend. The dotted

lines represent vertical averages of the AUC values for targets of that color for three

different detections. The red dotted line is the average of the in-color detections (i.e.,

the average of the solid lines shown for each color). The blue dotted line is the average

of the AUC for detections against only other automobile targets. The black dotted

line is the average of the AUC for detections against the entire background. According

to Fawcett [13], vertical averaging is most applicable when “comparing across model

classes,” meaning using different types of detectors or different parameters (i.e., the

covariance matrix) with the same detector. In contrast to threshold averaging, it

requires controlling for Pfa across ROC curves; this we accomplished with interpola-

tion. Threshold averaging is in our estimation inappropriate, since the specific AMF

output values are not comparable across model classes.

As with the results presented in Fig. 19, our intutions are generally confirmed.

We see most AUC curves peaking for true atmospheres at the 50th percentile. We

see that target detections are best when performed against the entire background

and worst when performed only against other cars of the same color. This indicates

that automobiles bearing similar colors are spectrally similar across the measured

wavelengths and thus more difficult to distinguish using the AMF. As suggested by

Fig. 21(d), detections against black objects are especially difficult; the resulting AUC

curves are almost random in appearance.
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Figure 20: AUCs from AMF detection of automobiles of the indicated colors. We
show results for the individual cars (solid lines), listed by material IDs, as detected
against only cars of the same color. We also show the average of all cars of that color
as detected against: only cars of the same color (red dotted); only the cars of all
colors (blue dotted); and the entire background of the image (black dotted).
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Figure 21: AUCs from AMF detection of automobiles of the indicated colors. We
show results for the individual cars (solid lines), listed by material IDs, as detected
against only cars of the same color. We also show the average of all cars of that color
as detected against: only cars of the same color (red dotted); only the cars of all
colors (blue dotted); and the entire background of the image (black dotted).
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4.4 AUC Contours as a Function of True Atmosphere and Estimated

Atmosphere

We wish to explore the possibility suggested by our earlier plots: that the 50th

percentile estimation may not maximize detector performance for all target types.

To do this, we must examine not only variations in the true atmospheric profile but

also variations in the estimated profile. We use contour plots where the contour lines

indicate the AUC as a function of both the estimated atmosphere (x-axis) and the
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Figure 22: Contour plots of the average AUCs for AMF detection of the green,
maroon, and red cars with the Pfa’s calculated from false alarms generated by all
background pixels, automobile pixels only, and like-color automobile pixels. We vary
both the “true” image illumination (y-axis) and the estimated illumination (x-axis)
by their percentiles in the historical distribution at the target site. Note that the
estimated illumination percentile that maximizes the AUC averaged across all possible
true illumination percentiles is indicated by the black dotted line.
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true atmosphere (y-axis). In Fig. 22 and Fig. 23, we consider panels that represent

the green, gold, white, and silver automobiles. (The AUC contour plots for all other

automobile colors are presented in Appendix D.) We plot the average AUC contours

for all cars of each color for detections against the entire background (first column),

all automobiles (second column) and same-color automobiles (third column). In all

graphs, we use a vertical dotted line to indicate the estimated atmosphere that max-

imizes the average AUC for all true atmospheres, i.e.,

AUCavg =
1

11

∑

%

AUC(%), % = {25, 30, 35, . . . 75} (36)

There are several generalizations we can make from these graphs. First, we

see that the contour lines are denser in the upper right hand corner of the graph,

indicating greater spectral variation in reaction to changes in atmospheric water vapor

content at high humidities than variation at low humidities, although this observation

is mitigated by the non-linear relationship between the nominal percentile of the

distribution and the underlying water vapor measurements. Second, we see that using

the 50th percentile of the atmospheric profile distribution as the optimum estimation

of water vapor content for purposes of target detection is the exception rather than the

rule, and that the actual optimum percentile varies with the target. The examples in

Fig. 22 and Fig. 23 are typical: the optimum values are just below the 50th percentile.

More extreme cases can be found in Appendix D.

4.5 Probability of Detection (Pd) at a Constant Probability of False

Alarm (Pfa): Contour Plots

A possible objection to the use of the AUC as a performance metric is that it

is inevitably influenced by regions of the ROC curve with no operational utility. For

instance, while the Pd might be quite high for Pfa’s between, say, 10% and 100%, no

operational detection system would be able to make use of data with false alarm rates
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Figure 23: Contour plots of the average AUCs for AMF detection of the silver and
white cars with the Pfa’s calculated from false alarms generated by all background
pixels, automobile pixels only, and like-color automobile pixels. We vary both the
“true” image illumination (y-axis) and the estimated illumination (x-axis) by their
percentiles in the historical distribution at the target site. Note that the estimated
illumination percentile that maximizes the AUC across all possible true illumination
percentiles is indicated by the black dotted line.

of that magnitude when the in-scene target density is well less than 10−3, as it is in

our example.

To overcome this problem, we substitute in our contour plots of the AUC with

the Pd at a constant Pfa = 0.05. The results of this substitution are shown for the

gold, maroon, silver, and white automobiles in Fig. 24 and Fig. 25. (All other results

are shown in Appendix E.)
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We see from these results that many of our conclusions from using the AUC

are confirmed. Again, the contour lines are denser in the upper right hand corner of

the graph, indicating greater spectral variation in reaction to changes in atmospheric

water vapor content at high humidities than variation at low humidities. Again also

we see that using the 50th percentile of the atmospheric profile distribution as the op-

timum estimation of water vapor content for the purpose of detection is the exception

rather than the rule, and that the actual optimum percentile varies with the target.

We see that while the magnitude of this offset from the 50th percentile varies with

material type, the direction of the offset for a specific material type tends to be con-

sistent across different methods of calculation (i.e., whether we are detecting targets

among like-colors, the overall class of automobiles, or the entire background). The

reason for these offsets has to do with the relative relationships between the target’s

location in hyperspectral space relative to that of various background materials.

In Table 4, we present the Pd and AUC-maximizing atmospheric percentile for

each automobile color, as well as the standard deviation of those percentiles. We

see that while there are exceptions, most of the optimum parameter assumptions

are on the low side of the atmospheric water vapor distribution. We also see from

the column of low standard deviations that the best assumption for each automobile

panel is stable across multiple measurements (the detection of red car among other red

cars being the significant outlier); this is surprising given the spectral dissimilarities

among different automobile colors and between the cars and the background. Note

that the data for the automobile colors whose optimums are at the tails (25th and

75th percentiles) of the distributions considered are likely unreliable, since there are

probably lower or higher distributions at which the true optimum would be found.

Black, blue w/black top and charcoal gray are colors likely in this category.

In Fig. 26, we present normalized histogram plots of optimum percentiles. The

Pd and AUC plots for detections against the entire background and the automobile

class only include results for all automobiles, while the detections against only other

like-color cars only include results for which we have multiple cars of the same color.
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Again, our earlier intutions from Table 4 is confirmed: we see that the optimum

atmospheric assumptions for purposes of target detection are in the lower half of the

distribution of atmospheric water vapor.

4.6 Summary of Results

This chapter demonstrates that a high level of target dependence governs results

across metrics. In Section 4.2, we observed that the particular target governed the
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Figure 24: Contour plots of the average ROC Pd when Pfa = 0.05 for AMF de-
tection of the green cars with the Pfa’s calculated from false alarms generated by
all background pixels, automobile pixels only, and like-color automobile pixels. We
vary both the “true” image illumination (y-axis) and the estimated illumination (x-
axis) by their percentiles in the historical distribution at the target site. Note that
the estimated illumination percentile that maximizes the Pd across all possible true
illumination percentiles is indicated by the black dotted line.
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degree to which our best detector performance could be found at the 50th percentile

atmospheric estimation. We confirmed this result in Section 4.3, where we also ob-

served that detection of specific cars was more difficult among like-colored cars than

among either the entire car class or the entire background. Finally, in Section 4.4 and

Section 4.5, we confirmed all of these results with the use of contours of the AUC and

Pd, noting that we could obtain detection optimizations by varying our atmospheric

assumptions depending on the specific target.
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Figure 25: Contour plots of the average ROC Pd when Pfa = 0.05 for AMF detection
of the silver and white cars with the Pfa’s calculated from false alarms generated by
all background pixels, automobile pixels only, and like-color automobile pixels. We
vary both the “true” image illumination (y-axis) and the estimated illumination (x-
axis) by their percentiles in the historical distribution at the target site. Note that
the estimated illumination percentile that maximizes the Pd across all possible true
illumination percentiles is indicated by the black dotted line.
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This observation may come as no surprise, given that the reflectance spectra

of different automobiles differ in the regions of the solar spectrum they emphasize.

Meanwhile, the atmospheric variation also affects the illumination in specific spectral

regions. When the regions of emphasis overlap the regions of variation, this results in

decreased signal to noise ratio (SNR) and ultimately hinders detection.

We point out here that the considered range of atmospheric variation under the

conditions described in Section 3.4.1 is very narrow and represents the most optimistic

scenario for knowing the true historic range. None of the standard atmospheric profiles

employed by MODTRAN (e.g., “mid-lat summer,” “U.S. Standard Atm,” etc.) lies

within that range. It is anticipated that, based on the results presented here, the use

Table 4: Performance maximizing atmospheric parameter assumptions for AMF
target detection in percentile of the distribution. In the header line, “BG” indicates
the detection was performed against the entire background, “AO” indicates the de-
tection was performed against only the class of automobiles, and “CO” indicates the
detection was performed against only cars of the same color. Where the “CO” column
is empty, there is only one car of that color in our data set. The “Stddev” column
shows the standard deviation of the Pd and AUC values for each auto color.

Auto Color
Pd(Pfa = 0.05) AUC

Stddev
BG AO CO BG AO CO

black 25 25 25 25 25 30 1.86
blue 35 30 40 25 35 45 6.46
gold 40 40 35 45 40 40 2.89
green 50 45 50 55 60 40 6.46
red 25 40 70 25 25 25 16.58

silver 40 35 45 40 35 55 6.87
white 45 60 45 50 50 40 6.24

blue w/black top 25 25 25 25 0
brown 70 75 70 70 2.17

charcoal gray 75 75 75 75 0
cranberry 45 35 50 45 5.45
dark blue 40 25 35 30 5.59

gray 55 40 55 50 6.12
gray w/black top 40 30 45 40 5.45

light gold 30 40 30 35 4.15
red/silver 60 55 55 60 2.50
steerling 30 30 30 30 0
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Figure 26: Normalized histograms of the optimum atmospheric water vapor profile
percentile for use in radiative transfer atmospheric correction for purposes of target
detection with the AMF. The metrics are the Pd when Pfa = 0.05 and the AUC for
detection against the entire background, the class of all automobiles, and like-color
automobiles.

of such atmospheres would produce quite poor results in general. These atmospheres

constitute continent-wide seasonal averages, and in any case do not take into account

various climatological shifts in the atmospheric parameters, such as CO2 and H2O

levels.
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V. Conclusion

5.1 Summary

Our goal with this dissertation is to characterize the detection error of the

Adaptive Matched Filter (AMF) output as a distribution dependent on the estimation

of the atmospheric parameters. In the prospectus submitted to the committee, we

proposed three specific objectives:

• Reconcile, to an order of magnitude, the solar radiances between PLEXUS

MODTRAN and DIRSIG.

• Characterize the atmospheric profiles, not by percentiles, but by some weighted

measure of the differences between their actual water vapor content in the

boundary layer.

• Develop a relationship between the input error, as defined by the difference

between atmospheric profiles, and two measures of the output error: the Bhat-

tacharyya coefficient between the AMF output distributions and the change in

the detection performance as measured by the AUC.

We have accomplished all three of these objectives.

The problems with both MODTRAN and DIRSIG involved the use of the user-

defined atmospheric profiles. The profiles as provided by LEEDR gave the atmo-

spheric parameters in units of altitude above the local ground level (AGL); however,

the profiles as expected by MODTRAN (and, by extension, DIRSIG and PLEXUS)

had altitude units above mean sea level (MSL). Our failure to adjust these altitudes

meant that we had been giving altitudes to MODTRAN that it interpreted as being

underneath the ground. This resulted in a critical error, and one which the DIRSIG

and PLEXUS TAPE5 parsers handled differently, with dramatically different outputs.

As shown in Fig. 7, The Euclidean distance between the profiles of several

measures of atmospheric water vapor content give us a highly linear relationship

with Euclidean distance between the atmospheric transmission – and therefore sensor-

reaching radiance and calculated target reflectance – generated by those profiles. Since
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the dew point temperature relationships are the most linear, this is the measure we

use in subsequent comparisons.

We have shown that the greater the error between the estimated atmospheric

profile and the actual profile under which the image was acquired, the greater the

difference between the outputs of the AMF as measured by the Bhattacharyya co-

efficient and, in general, the greater the error in detector performance as measured

by the ROC and the AUC. We have shown that the size of these errors is heavily

target dependent, specifically on its spectral properties. We have shown by our use

of contour plots that, again depending on the target, we can often improve detector

performance by assuming other than the median atmospheric conditions, given our

inherent uncertainty about the actual water vapor content at the time of the image.

5.2 Contributions

As the dearth of references in our background literature review indicates, very

little prior work has been done in the area of evaluating the effect of atmospheric

profile variation on detector performance. This dissertation makes several unique

contributions:

• A characterization along multiple metrics of the variable nature of the AMF

distribution and rates of detection as a function of changing water vapor content

along the atmospheric profile;

• An illustration of the dependence on specific target spectra of this effect; and

• The use of contour plots of the AUC and Pd to identify superior atmospheric

assumptions for the purpose of target detection.

The operational utility of these findings is readily apparent. Mission planners

and target intelligence officers will welcome the opportunity to improve their ability

to detect targets at lower rates of false-positives, particularly when that target is

singular in nature and decoys easy to deploy. This is especially true when, for instance,
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a quality of actionable intelligence would be to distinguish a particular automobile

(carrying adversaries) from other like-color automobiles (carrying neutrals).

5.3 Possibility of Future Work

Directions for future research would be to measure the effects under further

variation in atmospheric parameters. Our research considers variation under the “best

case scenario” when detailed atmospheric profile distributions are known for time of

day and time of year at a specific location. We could consider the effect of greater

variation when we are required to use regional, seasonal or daily average distributions.

We could expand the range of atmospheric parameters to include aerosols in

the limited visibility case, considering the effect of few and scattered clouds, fog, and

rain.

We could check to see if the results are consistent using alternative methods

of feature selection and the number of features retained. For the purpose of these

experiments, we first culled our spectra of the water vapor absorption bands around

1.4 and 1.9 microns. However, our choices as to the cutoff criteria are somewhat

arbitrary, and it would be useful to check the results using other methods.

A further area of inquiry might be to consider the high level of variation in the

reconstructed reflectances of Appendix A and try to use them to determine atmo-

spheric water vapor, given known in-scene targets.

Another area of research would be to validate our conclusions against actual

imagery. Use a representative background to model the detection of particular tar-

gets in-scene, and then compare our performance to actual detection under various

atmospheric assumptions.

Finally, an interesting extension to the current work is to consider other target

detection schemes to determine, under what atmospheric conditions, which detection

scheme should be used?
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Appendix A. Spectral Signatures for All Automobiles

Shown here are the reflectance signatures of each of 41 automobiles, both as it appears

in the spectral library (dashed line) and as it appears in the hyperspectral image as

it has been reconstructed under the various atmospheric profiles (colored lines), given

that the image itself was simulated under the 50th percentile of atmospheric water

vapor distribution.
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(ii) Gray Car w/ Black Top #20120
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Appendix B. In-color ROC Curves by Percentile Atmosphere

Shown here are the ROC curves for AMF detection of all cars for which we have

multiple cars per color. The “estimated” atmosphere used to convert the image

radiance measurements to reflectance was the 50th percentile; the “true” atmosphere

used to simulate the image radiances are indicated in the legend. Note that the

probabilities of false alarm (Pfa) are calculated from only among cars of the same

color as the target car.
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(t) Gold Car #20139
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(w) Green Car #20123
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(x) Green Car #20132
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Appendix C. Full-background ROC Curves by Percentile Atmosphere

Shown here are the ROC curves for AMF detection of all cars for which we have only

one car per color. The “estimated” atmosphere used to convert the image radiance

measurements to reflectance was the 50th percentile; the “true” atmosphere used to

simulate the image radiances are indicated in the legend. Note that the probabilities

of false alarm (Pfa) are calculated from among all image pixels.
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(c) Charcoal Gray Car #20140
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(d) Cranberry Car #20136
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(e) Dark Blue Car #20106
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(h) Red and Silver Car #20138
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Appendix D. AUC Contour Plots

Contour plots of the AUCs for AMF detection of the indicated automobiles with the

Pfa’s calculated from false alarms generated by all background pixels and automobile

pixels only. We vary both the “true” image illumination (y-axis) and the estimated

illumination (x-axis) by their percentiles in the historical distribution at the target

site. Note that the estimated illumination percentile that maximizes the AUC across

all possible true illumination percentiles is indicated by the black dotted line.
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Contour plots of the average AUCs for AMF detection of the indicated cars

with the Pfa’s calculated from false alarms generated by all background pixels, auto-

mobile pixels only, and like-color automobile pixels. We vary both the “true” image

illumination (y-axis) and the estimated illumination (x-axis) by their percentiles in

the historical distribution at the target site. Note that the estimated illumination

percentile that maximizes the AUC across all possible true illumination percentiles is

indicated by the black dotted line.
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Appendix E. Pd Contour Plots

Contour plots of the ROC Pd at Pfa = 0.05 for AMF detection of the indicated

automobiles with the Pfa’s calculated from false alarms generated by all background

pixels and automobile pixels only. We vary both the “true” image illumination (y-

axis) and the estimated illumination (x-axis) by their percentiles in the historical

distribution at the target site. Note that the estimated illumination percentile that

maximizes the Pd across all possible true illumination percentiles is indicated by the

black dotted line. We see that one of the contour plots for detections of the blue

car is empty; this is because the Pd was uniformly zero for Pfa = 0.05 among only

automobiles.
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(r) Red-Silver Car Pds, Car-class Only
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(t) Steerling Car Pds, car-class only
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Contour plots of the average ROC Pd when Pfa = 0.05 for AMF detection of

the indicated automobiles with the Pfa’s calculated from false alarms generated by

all background pixels, automobile pixels only, and like-color automobile pixels. We

vary both the “true” image illumination (y-axis) and the estimated illumination (x-

axis) by their percentiles in the historical distribution at the target site. Note that

the estimated illumination percentile that maximizes the Pd across all possible true

illumination percentiles is indicated by the black dotted line.
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(v) Black, car-class only
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(w) Black, like-color only
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(x) Blue, entire background
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(y) Blue, car-class only
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(z) Blue, like-color only
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(bb) Gold, car-class only
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(cc) Gold, like-color only
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0.
5

0.5

0.
60.6

0.
7

0.7

0.
8

0.8
0.9

0.9

Est. Atmosphere (%−ile)

T
ru

e 
A

tm
os

ph
er

e 
(%

−i
le

)

25 35 45 55 65 75
25

35

45

55

65

75

(ff) Green, like-color only
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(gg) Maroon, entire background
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(ii) Maroon, like-color only
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(kk) Red, car-class only
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